જો પ્રત્યેક અવલોકન $x_{1}, x_{2}, \ldots ., x_{n}$ માં કોઈ ધન કે ત્રણ સંખ્યા $'a'$ ઉમેરવામાં આવે, તો સાબિત કરો કે વિચરણ બદલાતું નથી.
Let $\bar{x}$ be the mean of $x_{1}, x_{2}, \ldots ., x_{n} .$ Then the variance is given by
$\sigma _1^2 = \frac{1}{n}\sum\limits_{i = 1}^n {{{\left( {{x_i} - \bar x} \right)}^2}} $
If $'a$ is added to each observation, the new observations will be
$y_{i}=x_{i}+a$ .......$(1)$
Let the mean of the new observations be $\bar{y} .$ Then
$\bar y = \frac{1}{n}\sum\limits_{i = 1}^n {{y_i} = \frac{1}{n}} \sum\limits_{i = 1}^n {\left( {{x_i} - a} \right)} $
$ = \frac{1}{n}\left[ {\sum\limits_{i = 1}^n {{x_i}} \sum\limits_{i = 1}^n a } \right] = \frac{1}{n}\sum\limits_{i = 1}^n {{x_i} + \frac{{na}}{n} = } \bar x + a$
i.e. $\bar{y}=\bar{x}+a$ ..........$(2)$
Thus, the variance of the new observations
$\sigma _2^2 = \frac{1}{n}\sum\limits_{i = 1}^n {{{\left( {{y_i} - \bar y} \right)}^2}} = \frac{1}{n}\sum\limits_{i = 1}^n {{{\left( {{x_i} + a - \bar x - a} \right)}^2}} $ [ Using $(1)$ and $(2)$ ]
$ = \frac{1}{n}\sum\limits_{i = 1}^n {{{\left( {{x_i} + \bar x} \right)}^2}} = \sigma _1^2$
Thus, the variance of the new observations is same as that of the original observations.
જો આપેલ દરેક $n$ અવલોકનો ને કોઈ ધન સંખ્યા $'k'$ વડે ગુણવવામાં આવે તો નવા અવલોકનોના ગણ માટે
$8, 12, 13, 15,22$ અવલોકનોનું વિચરણ :
ધારો કે $5$ અવલોકનો $x_{1}, x_{2}, x_{3}, x_{4}, x_{5}$ નાં મધ્યક અને વિચરણ અનુક્રમે $\frac{24}{5}$ અને $\frac{194}{25}$ છે.જો પ્રથમ $4$ અવલોકનોમાં મધ્યક અને વિચરણ અનુક્રમે $\frac{7}{2}$ અને $a$ હોય,તો $\left(4 a+x_{5}\right)=\dots\dots$
બિંદુ $c$ આગળ $x_1, x_2 ……, x_n$ અવલોકનોના ગણનો મધ્યક વર્ગ વિચલન $\frac{1}{n}\,\,\sum\limits_{i\, = \,1}^n {{{({x_i}\, - \,\,c)}^2}} $વડે દર્શાવાય છે. $-2$ અને $2 $ નાં મધ્યક વર્ગ વિચલન અનુક્રમે $18$ અને $10$ હોય, તો આ ગણના અવલોકનોનું પ્રમાણિત વિચલન શોધો.