જો વિતરણનું દરેક અવલોકન જેનું વિચરણ $\sigma^2$ એ $\lambda$ વડે ગુણીત હોય તો નવા અવલોકનોનું પ્રમાણિત વિચલન શોધો.
$\sigma$
$\lambda$$\sigma$
$| $ $\lambda$ $| $ $\sigma$
$\lambda$ $2$ $\sigma$
જો પ્રત્યેક અવલોકન $x_{1}, x_{2}, \ldots ., x_{n}$ માં કોઈ ધન કે ત્રણ સંખ્યા $'a'$ ઉમેરવામાં આવે, તો સાબિત કરો કે વિચરણ બદલાતું નથી.
વિતરણનો મધ્યક $4$ છે. જો તેના વિચરણનો ચલનાંક $58\% $ હોયતો વિતરણનું પ્રમાણિત વિચલન કેટલું થાય છે ?
$200$ અને $300$ કદ વાળા બે સમૂહનો મધ્યક અનુક્રમે $25 $ અને $10 $ છે. તેમનું પ્રમાણિત વિચલન અનુક્રમે $3$ અને $4$ છે. $500$ કદના સંયુક્ત નમૂનાનું વિચરણ કેટલું થાય છે ?
$2n$ અવલોકનમાં અડધા અવલોકનો $'a'$ અને બાકીના અવલોકનો $' -a'$ છે જો આ અવલોકનોનું પ્રમાણિત વિચલન $2$ હોય તો $\left| a \right|$ =
જો આઠ સંખ્યાઓ $3,7,9,12,13,20, x$ અને $y$ નું મધ્યક અને વિચરણ અનુક્રમે $10$ અને $25$ હોય તો $\mathrm{x} \cdot \mathrm{y}$ મેળવો.