आप जानते हैं कि $\frac{1}{7}=0 . \overline{142857}$ है।वास्तव में, लंबा भाग दिए बिना क्या आप यह बता सकते हैं कि $\frac{2}{7}, \frac{3}{7}, \frac{4}{7}, \frac{5}{7}, \frac{6}{7}$ के दशमलव प्रसार क्या हैं ? यदि हाँ, तो कैसे?
We are given that $\frac{1}{7}=0 . \overline{142857}$
$\frac{2}{7}=2 \times \frac{1}{7}=2 \times(0 . \overline{142857})=0 . \overline{285714}$
$\frac{3}{7}=3 \times \frac{1}{7}=3 \times(0 . \overline{142857})=0.4 \overline{28571}$
$\frac{4}{7}=4 \times \frac{1}{7}=4 \times(0 . \overline{142857})=0 . \overline{571428}$
$\frac{5}{7}=5 \times \frac{1}{7}=5 \times(0 . \overline{142857})=0 . \overline{714285}$
$\frac{6}{7}=6 \times \frac{1}{7}=6 \times(0 . \overline{142857})=0 . \overline{857142}$
Thus, without actually doing the long division we can predict the decimal expansions of the above given rational numbers.
नीचे दिए गए कथन सत्य हैं या असत्य? कारण के साथ अपने उत्तर दीजिए।
$(i)$ प्रत्येक प्राकृत संख्या एक पूर्ण संख्या होती है।
$(ii)$ प्रत्येक पूर्णांक एक पूर्ण संख्या होती है।
$(iii)$ प्रत्येक परिमेय संख्या एक पूर्ण संख्या होती है।
क्या सभी धनात्मक पूर्णांकों के वर्गमूल अपरिमेय होते हैं ? यदि नहीं, तो एक ऐसी संख्या के वर्गमूल का उदाहरण दीजिए जो एक परिमेय संख्या है।
$8 \sqrt{15}$ को $2 \sqrt{3}$ से भाग दीजिए।
$\frac{5}{\sqrt{3}-\sqrt{5}}$ के हर का परिमेयकरण कीजिए।
सरल कीजिए
$(i)$ $2^{\frac{2}{3}} \cdot 2^{\frac{1}{3}}$
$(ii)$ $\left(\frac{1}{3^{5}}\right)^{4}$
$(iii)$ $\frac{7^{\frac{1}{5}}}{7^{\frac{1}{3}}}$
$(iv)$ $13^{\frac{1}{5}} \cdot 17^{\frac{1}{5}}$