વિસ્તરણનું વ્યાપક પદ લખો : $\left(x^{2}-y x\right)^{12}, x \neq 0$
It is known that the general term ${T_{r + 1}}{\rm{ \{ }}$ which is the ${(r + 1)^{{\rm{th }}}}$ term $\} $ in the binomial expansion of $(a+b)^{n}$ is given by ${T_{r + 1}} = {\,^n}{C_r}{a^{n - r}}{b^r}$
Thus, the general term in the expansion of $\left(x^{2}-y x\right)^{12}$ is
${T_{r + 1}} = {\,^{12}}{C_r}{\left( {{x^2}} \right)^{12 - r}}{( - yx)^r} = {( - 1)^r}{\,^{12}}{C_r} \cdot {x^{24 - 2r}}{y^r} = {( - 1)^r}{\,^{12}}{C_r} \cdot {x^{24 - r}} \cdot {y^r}$
${\left( {x + \frac{1}{x}} \right)^{10}}$ ના વિસ્તરણમાં મધ્યમપદ મેળવો.
સમીકરણ $(1+x)^{10}+x(1+x)^{9}+x^{2}(1+x)^{8}+\ldots+x^{10}$ માં $x^{7}$ નો સહગુણક મેળવો.
જો ${\left[ {2\,x\,\, + \,\,\frac{1}{x}} \right]^n}$ ના વિસ્તરણમાં બધા સહગુણકોનો સરવાળો $256$ થાય તો આ વિસ્તરણમાં અચળ પદ મેળવો
જો ${\left( {{x^4} + \frac{1}{{{x^3}}}} \right)^{15}}$ ના વિસ્તરણમાં ${x^4}$ એ ${r^{th}}$ પદમાં બને છે તો $r = $
${(1 + x)^{2n}}$ ના વિસ્તરણમાં મધ્યમપદ મેળવો.