${(1 + x)^{2n}}$ ના વિસ્તરણમાં મધ્યમપદ મેળવો.
$\frac{{(2n)!}}{{n!}}{x^2}$
$\frac{{(2n)!}}{{n!(n - 1)!}}{x^{n + 1}}$
$\frac{{(2n)!}}{{{{(n!)}^2}}}{x^n}$
$\frac{{(2n)!}}{{(n + 1)!(n - 1)!}}\,{x^n}$
${(1 + 3x + 2{x^2})^6}$ ના વિસ્તરણમાં ${x^{11}}$ નો સહગુણક મેળવો.
જો ${(x + a)^n}$ ના વિસ્તરણમાં પ્રથમ ,બીજું અને ત્રીજું પદ અનુક્રમે $240, 720$ અને $1080$ હોય , તો $n$ મેળવો.
જો ${(1 + x)^{21}}$ ના વિસ્તરણમાં ${x^r}$ અને ${x^{r + 1}}$ ના સહગુણક સમાન હોય તો $ r$ મેળવો.
$\left(1+\mathrm{x}+\mathrm{x}^{2}\right)^{10}$ ના વિસ્તરણમાં $x^{4}$ ના મેળવો.
$(x+a)^{n}$ ના વિસ્તરણમાં છેલ્લેથી $r$ મું પદ શોધો.