निम्न में से कौनसा ग्राफ, $R$ त्रिज्या के खोखले गोलीय चालक के कारण विद्युत क्षेत्र $E$ तथा गोले के केन्द्र से दूरी $r$ में परिवर्तन को दर्शाता है
$6\,m$ त्रिज्या वाले एक गोले का आयतन आवेश घनत्व $2\,\mu C cm ^{-3}$ है। गोले के पृष्ठ से बाहर आ रही बल रेखाओं की प्रति इकाई पृष्ठ क्षेत्रफल संख्या $........\times 10^{10}\,NC ^{-1}$ होगी। [दिया है : निर्वात का परावैद्युतांक $\left.\epsilon_0=8.85 \times 10^{-12} C ^2 N ^{-1}- m ^{-2}\right]$
त्रिज्या $'a'$ तथा $'b'$ के दो एक-केन्द्री गोलों (चित्र देखिये) के बीच के स्थान में आयतन आवेश-घनत्व $\rho=\frac{A}{r}$ है, जहाँ $A$ स्थिरांक है तथा $r$ केन्द्र से दूरी है। गोलों के केन्द्र पर एक बिन्दु-आवेश $Q$ है। $'A'$ का वह मान बताये जिससे गोलों के बीच के स्थान में एकसमान वैध्युत-क्षेत्र हो:
एक चालक गोले की त्रिज्या $R = 20$ सेमी. है। इसे $Q = 16\,\mu C$ आवेश दिया गया। इसके केन्द्र पर तीव्रता $\overrightarrow E $ है
चित्र में, धनात्मक आवेश की एक बहुत बड़ी समतल शीट दर्शायी गयी है। आवेश वितरण से $l$ व $2 l$ दूरी पर दो बिन्दु $P _1$ व $P _2$ है। यदि $\sigma$ पृप्ठ आवेश घनत्व है, तब $P _1$ व $P _2$ पर विद्युत क्षेत्र $E _1$ व $E _2$ के परिमाण क्रमश: है।