$6\,m$ त्रिज्या वाले एक गोले का आयतन आवेश घनत्व $2\,\mu C cm ^{-3}$ है। गोले के पृष्ठ से बाहर आ रही बल रेखाओं की प्रति इकाई पृष्ठ क्षेत्रफल संख्या $........\times 10^{10}\,NC ^{-1}$ होगी। [दिया है : निर्वात का परावैद्युतांक $\left.\epsilon_0=8.85 \times 10^{-12} C ^2 N ^{-1}- m ^{-2}\right]$
$44$
$43$
$45$
$42$
एक $R$ त्रिज्या का कुचालक गोला एकसमान रूप् से आवेशित है। विद्युत क्षेत्र की तीव्रता केन्द्र से $r$ दूरी पर
$R$ त्रिज्या के किसी आवेशित चालक गोलीय कोश (खोल) के केन्द्र से $\frac{3 R}{2}$ दूरी पर विधुत क्षेत्र $E$ है। इसके केन्द्र से $\frac{R}{2}$ दूरी पर विधुत क्षेत्र होगा।
$12\, cm$ त्रिज्या वाले एक गोलीय चालक के पृष्ठ पर $1.6 \times 10^{-7} \,C$ का आवेश एकसमान रूप से वितरित है।
$(a)$ गोले के अंदर
$(b)$ गोले के ठीक बाहर
$(c)$ गोले के केंद्र से $18 cm$ पर अवस्थित, किसी बिंदु पर विध्यूत क्षेत्र क्या होगा?
दो बड़ी, पतली धातु की प्लेटें एक-दूसरे के समानांतर एवं निकट हैं। इनके भीतरी फलकों पर, प्लेटों के पृष्ठीय आवेश घनत्वों के चिह्न विपरीत हैं तथा इनका परिमाण $17.0 \times 10^{-22} C /$ $m ^{2}$ है।
$(a)$ पहली प्लेट के बाह्य क्षेत्र में, $(b)$ दूसरी प्लेट के बाह्हा क्षेत्र में, तथा $(c)$ प्लेटों के बीच में विद्र
एक $R$ त्रिज्या के गोले में समान घनत्व $\rho$ का आवेश वितरित है। यदि इस गोले से $\frac{ R }{2}$ त्रिज्या का एक गोला काटकर चित्रानुसार निकाल दिया जाय तो बचे हुए भाग के कारण बिन्दु ओं $A$ तथा $B$ पर विधुत क्षेत्र (क्रमशः $\overrightarrow{ E }_{ A }$ तथा $\overrightarrow{ E }_{ B }$ ) के मान का अनुपात $\frac{\left|\overrightarrow{ E }_{ A }\right|}{\left|\overrightarrow{ E }_{ B }\right|}$ होगा।