एक इलैक्ट्रॉन $+\sigma$ पृष्ठ आवेश घनत्व वाली एक समान आवेशित अनंत आकार की समतल चादर $s$ के विद्युत क्षेत्र के कारण गति कर रहा है। $\mathrm{t}=0$ पर इलेक्ट्रॉन $\mathrm{S}$ से $1$ मी. की दूरी पर है और इसकी चाल $1$ मी./से. है। यदि $\mathrm{t}=1$ पर इलैक्ट्रॉन $\mathrm{S}$ से टकराता है तब $\sigma$ का अधिकतम मान $\alpha\left[\frac{\mathrm{m} \epsilon_0}{\mathrm{e}}\right] \frac{\mathrm{C}}{\mathrm{m}^2}$ है। $\alpha$ का मान है।

  • [JEE MAIN 2024]
  • A
    $8$
  • B
    $5$
  • C
    $10$
  • D
    $45$

Similar Questions

रैखिक आवेश घनत्व $\lambda$ वाला एक लंबा आवेशित बेलन एक खोखले समाक्षीय चालक बेलन द्वारा घिरा है। दोनों बेलनों के बीच के स्थान में विध्यूत क्षेत्र कितना है?

दिया है, एक गोलीय सममित आवेश वितरण जिसमें आवेश घनत्व इस प्रकार परिवर्तित होता है।

$\rho(r)=\rho_{0}\left(\frac{5}{4}-\frac{ r }{ R }\right), r=R$ तक और $\rho(r)=0$

$r>R$ के लिए जहाँ $r$ मूलबिन्दु से दूरी है। मूलबिन्दू से दूरी $r(r< R)$ पर विघुत-क्षेत्र इस प्रकार दिया जाता है

  • [AIEEE 2010]

दो बड़ी, पतली धातु की प्लेटें एक-दूसरे के समानांतर एवं निकट हैं। इनके भीतरी फलकों पर, प्लेटों के पृष्ठीय आवेश घनत्वों के चिह्न विपरीत हैं तथा इनका परिमाण $17.0 \times 10^{-22} C /$ $m ^{2}$ है।

$(a)$ पहली प्लेट के बाह्य क्षेत्र में, $(b)$ दूसरी प्लेट के बाह्हा क्षेत्र में, तथा $(c)$ प्लेटों के बीच में विद्र

त्रिज्या $'a'$ तथा $'b'$ के दो एक-केन्द्री गोलों (चित्र देखिये) के बीच के स्थान में आयतन आवेश-घनत्व $\rho=\frac{A}{r}$ है, जहाँ $A$ स्थिरांक है तथा $r$ केन्द्र से दूरी है। गोलों के केन्द्र पर एक बिन्दु-आवेश $Q$ है। $'A'$ का वह मान बताये जिससे गोलों के बीच के स्थान में एकसमान वैध्युत-क्षेत्र हो:

  • [JEE MAIN 2016]

दो अनन्त लम्बाई के समान्तर तार जिन पर रेखीय आवेश घनत्व क्रमश: ${\lambda _1}$ और ${\lambda _2}$ हैं, $R$ मीटर की दूरी पर रखे हैं। उनमें से किसी एक की एकांक लम्बाई पर बल होगा $\left( {K = \frac{1}{{4\pi {\varepsilon _0}}}} \right)$