चित्र में, धनात्मक आवेश की एक बहुत बड़ी समतल शीट दर्शायी गयी है। आवेश वितरण से $l$ व $2 l$ दूरी पर दो बिन्दु $P _1$ व $P _2$ है। यदि $\sigma$ पृप्ठ आवेश घनत्व है, तब $P _1$ व $P _2$ पर विद्युत क्षेत्र $E _1$ व $E _2$ के परिमाण क्रमश: है।
$E _{1}=\sigma / \varepsilon_{0}, E _{2}=\sigma / 2 \varepsilon_{0}$
$E _{1}=2 \sigma / \varepsilon_{0}, E _{2}=\sigma / \varepsilon_{0}$
$E _{1}= E _{2}=\sigma / 2 \varepsilon_{0}$
$E _{1}= E _{2}=\sigma / \varepsilon_{0}$
दिया है, एक गोलीय सममित आवेश वितरण जिसमें आवेश घनत्व इस प्रकार परिवर्तित होता है।
$\rho(r)=\rho_{0}\left(\frac{5}{4}-\frac{ r }{ R }\right), r=R$ तक और $\rho(r)=0$
$r>R$ के लिए जहाँ $r$ मूलबिन्दु से दूरी है। मूलबिन्दू से दूरी $r(r< R)$ पर विघुत-क्षेत्र इस प्रकार दिया जाता है
एक बिन्दु आवेश $Q$, एक एकसमान रेखीय आवेश घनत्व (Linear charge density) $\lambda$ वाले अनन्त लम्बाई तके तार तथा एक एकसमान पृष्ठ आवेश घनत्व (uniform surface charge density) $\sigma$ वाले अनन्त समतल चादर के कारण $r$ दूरी पर विद्युत क्षेत्र की तीव्रतायें क्रमश: $E_1(r), E_2(r)$ तथा $E_3(r)$ हैं यदि एक दी गई दूरी $r_0$ पर $E_1\left(r_0\right)=E_2\left(r_0\right)=E_3\left(r_0\right)$ तब
यदि पृथक्कृत कुचालक गोले की त्रिज्या $R$ तथा आवेश घनत्व $\rho $ है। गोले के केन्द्र से $r$ दूरी $(r\; < \;R)$ पर विद्युत क्षेत्र होगा
$10 \,cm$ त्रिज्या के चालक गोले पर अज्ञात परिणाम का आवेश है। यद् गोले के केंद्र से $20\, cm$ दूरी पर विध्यूत क्षेत्र $1.5 \times 10^{3}\, N / C$ त्रिज्यत: अंतर्मुखी (radially inward) है तो गोले पर नेट आवेश कितना है?
माना $\sigma$ चित्रानुसार दो अनन्त पतली समतल शीटो का एकसमान पृष्ठीय आवेश घनत्व है। तब तीन विभिन्न प्रभागो में विद्युत क्षेत्र के मान $E_{\mathrm{I}}, E_{\mathrm{II}}$ व $E_{\mathrm{II}}$ होगें