संख्या रेखा पर $5$ दशमलव स्थानों तक, अर्थात् $5.37777$ तक $5.3 \overline{7}$ का निरूपण देखिए।

Vedclass pdf generator app on play store
Vedclass iOS app on app store

Once again we proceed by successive magnification, and successively decrease the lengths of the portions of the number line in which $5.3 \overline{7}$ is located. First, we see that $5.3 \overline{7}$ is located between $5$ and $6 .$ In the next step, we locate $5.3 \overline{7}$ between $5.3$ and $5.4 .$ To get a more accurate visualization of the representation, we divide this portion of the number line into $10$ equal parts and use a magnifying glass to visualize that $5.3 \overline{7}$ lies between $5.3 \overline{7}$ and $5.38 .$ To visualize $5.3 \overline{7}$ more accurately, we again divide the portion between $5.3 \overline{7}$ and 5.38 into ten equal parts and use a magnifying glass to visualize that $5.3 \overline{7}$ lies between $5.377$ and $5.378 .$ Now to visualize $5.3 \overline{7}$ still more accurately, we divide the portion between $5.377 $ an $5.378$ into $10$ equal parts, and visualize the representation of $5.3 \overline{7}$ as in Fig. $(iv)$. Notice that $5.3 \overline{7}$ is located closer to $5.3778$ than to $5.3777$ [see Fig $(iv)$].

1098-s28

Similar Questions

वास्तविक संख्या रेखा पर $\sqrt{3}$ का स्थान निर्धारण कीजिए।

दिखाइए कि $1.272727 \ldots=1 . \overline{27}$ को $\frac{p}{q}$ के रूप में व्यक्त किया जा सकता है, जहाँ $p$ और $q$ पूर्णांक हैं और $q \neq 0$ है।

आप जानते हैं कि $\frac{1}{7}=0 . \overline{142857}$ है।वास्तव में, लंबा भाग दिए बिना क्या आप यह बता सकते हैं कि $\frac{2}{7}, \frac{3}{7}, \frac{4}{7}, \frac{5}{7}, \frac{6}{7}$ के दशमलव प्रसार क्या हैं ? यदि हाँ, तो कैसे?

निम्नलिखित व्यंजकों में से प्रत्येक व्यंजक को सरल कीजिए

$(i)$ $(3+\sqrt{3})(2+\sqrt{2})$

$(ii)$ $(3+\sqrt{3})(3-\sqrt{3})$

$(iii)$ $(\sqrt{5}+\sqrt{2})^{2}$

$(iv)$ $(\sqrt{5}-\sqrt{2})(\sqrt{5}+\sqrt{2})$

$6 \sqrt{5}$ को $2 \sqrt{5}$ से गुणा कीजिए।