दो गेंद एक बॉक्स से बिना प्रतिस्थापित किए निकाली जाती है। बॉक्स में $10$ काली और $8$ लाल गेदें हैं तो प्रायिकता ज्ञात कीजिए एक काली तथा दूसरी लाल हो।
Total number of balls $=18$
Number of red balls $=8$
Number of black balls $=10$
Probability of getting first ball as red $=\frac{8}{18}=\frac{4}{9}$
The ball is replaced after the first draw.
Probability of getting second ball as black $=\frac{10}{18}=\frac{5}{9}$
Therefore, probability of getting first ball as black and second ball as red $=\frac{4}{9} \times \frac{5}{9}=\frac{20}{81}$
Therefore, probability that one of them is black and other is red
$=$ Probability of getting first ball black and second as red $+$ Probability of getting first ball red and second ball black
$=\frac{20}{81}+\frac{20}{81}$
$=\frac{40}{81}$
भारत, वेस्टइंडीज व आस्ट्रेलिया प्रत्येक से $2$ मैच खेलता है। किसी भी मैच में भारत के अंक $0, 1, 2$ अर्जित करने की प्रायिकतायें क्रमश: $0.45, 0.05$ व $0.50$ हैं। यह मानकर कि परिणाम स्वतन्त्र हैं भारत के कम से कम $7$ अंक अर्जित करने की प्रायिकता है
एक विशेष समस्या को $A$ और $B$ द्वारा स्वतंत्र रूप से हल करने की प्रायिकताएँ क्रमश : $\frac{1}{2}$ और $\frac{1}{3}$ हैं। यदि दोनों, स्वतंत्र रूप से, समस्या हल करने का प्रयास करते हैं, तो प्रायिकता ज्ञात कीजिए कि
समस्या हल हो जाती है।
घटनाएँ $E$ और $F$ इस प्रकार हैं कि $P ( E-$ नहीं और $F -$ नहीं $)=0.25,$ बताइए कि $E$ और $F$ परस्पर अपवर्जी हैं या नहीं ?
दो पासे स्वतंत्र रुप से फेंके जाते हैं। माना पहले पासे पर प्रकट होने वाली संख्या के दूसरे पासे पर प्रकट होने वाली संख्या से कम होने की घटना $\mathrm{A}$ है, पहले पासे पर सम संख्या तथा दसरे पासे पर विषम संख्या के प्रकट होने की घटना $\mathrm{B}$ है और पहले पासे पर विषम संख्या तथा दूसरे पासे पर सम संख्या के प्रकट होने की घटना $\mathrm{C}$ है। तो
एक कक्षा के $60$ विद्यार्थियों में से $30$ ने एन. सी. सी. ( $NCC$ ), $32$ ने एन. एस. एस. $(NSS)$ और $24$ ने दोनों को चुना है। यदि इनमें से एक विद्यार्थी यादृच्छया चुना गया है तो प्रायिकता ज्ञात कीजिए कि
विद्यार्थी ने न तो एन.सी.सी. और न ही एन.एस.एस. को चुना है।