Two balls are drawn at random with replacement from a box containing $10$ black and $8$ red balls. Find the probability that One of them is black and other is red.

Vedclass pdf generator app on play store
Vedclass iOS app on app store

Total number of balls $=18$

Number of red balls $=8$

Number of black balls $=10$

Probability of getting first ball as red $=\frac{8}{18}=\frac{4}{9}$

The ball is replaced after the first draw.

Probability of getting second ball as black $=\frac{10}{18}=\frac{5}{9}$

Therefore, probability of getting first ball as black and second ball as red $=\frac{4}{9} \times \frac{5}{9}=\frac{20}{81}$

Therefore, probability that one of them is black and other is red

$=$ Probability of getting first ball black and second as red $+$ Probability of getting first ball red and second ball black

$=\frac{20}{81}+\frac{20}{81}$

$=\frac{40}{81}$

Similar Questions

$A$ and $B$ are two events such that $P(A)=0.54$, $P(B)=0.69$ and $P(A \cap B)=0.35.$ Find  $P \left( A ^{\prime} \cap B ^{\prime}\right)$.

Let $A$ and $B$ be independent events with $P(A)=0.3$ and $P(B)=0.4$. Find $P(A \cup B)$

In a hostel, $60 \%$ of the students read Hindi newspaper, $40 \%$ read English newspaper and $20 \%$ read both Hindi and English newspapers. A student is selected at random Find the probability that she reads neither Hindi nor English newspapers.

If $P(A) = 2/3$, $P(B) = 1/2$ and ${\rm{ }}P(A \cup B) = 5/6$ then events $A$ and $B$ are

Events $\mathrm{A}$ and $\mathrm{B}$ are such that $\mathrm{P}(\mathrm{A})=\frac{1}{2}, \mathrm{P}(\mathrm{B})=\frac{7}{12}$ and $\mathrm{P}$ $($ not $ \mathrm{A}$ or not $\mathrm{B})=\frac{1}{4} .$ State whether $\mathrm{A}$ and $\mathrm{B}$ are independent?