यदि $E$ व $F$ स्वतंत्र घटनायें इस प्रकार हैं कि $0 < P(E) < 1$ और $0 < P\,(F) < 1,$ तो
$E$ तथा ${F^c}$( $F$ का पूरक) स्वतंत्र घटनायें हैं
${E^c}$ व ${F^c}$स्वतंत्र हैं
$P\,\left( {\frac{E}{F}} \right) + P\,\left( {\frac{{{E^c}}}{{{F^c}}}} \right) = 1$
उपरोक्त सभी
दो पांसे फेंके जाते हैं। यदि पहले पांसे पर $5$ आता हो, तो दोनों पांसों पर आने वाले अंकों का योग $11$ होने की प्रायिकता है
यदि $P ( A )=\frac{3}{5}, P ( B )=\frac{1}{5}$ और $A$ तथा $B$ स्वतंत्र घटनाएँ हैं तो $P ( A \cap B )$ ज्ञात कीजिए।
एक अनभिनत (unbiased) पासे को दो बार उछाला गया। मान लें $A$ घटना 'पहली उछाल पर विषम संख्या प्राप्त होना' और $B$ घटना 'द्वितीय उछाल पर विषम संख्या प्राप्त होना ' दर्शाते हैं। घटनाओं $A$ और $B$ के स्वातंत्र्य का परीक्षण कीजिए।
मान लें $A$ तथा $B$ स्वतंत्र घटनाएँ हैं और $P ( A )=\frac{1}{2}$ तथा $P ( B )=\frac{7}{12}$ और $P ( A$ -नहीं और $B$ -नहीं $)=\frac{1}{4}$. क्या $A$ और $B$ स्वतंत्र घटनाएँ हैं?
यदि $A$ तथा $B$ कोई दो घटनाएँ हों, तो उनमें से ठीक एक घटना के घटित होने की प्रायिकता है