$a, b$ एवं $c[a < b < c]$ त्रिज्याओं वाले तीन सकेन्द्रीय धात्विक कोशों $\mathrm{X}, \mathrm{Y}$ एवं $\mathrm{Z}$ पर पृष्ठ धारा घनत्व क्रमशः $\sigma,-\sigma$ एवं $\sigma$ है। कोशों $\mathrm{X}$ एवं $\mathrm{Z}$ पर विभव समान है। यदि कोशों $\mathrm{X}$ एवं $\mathrm{Y}$ की त्रिज्याऐं क्रमशः $2 \mathrm{~cm}$ एवं $3 \mathrm{~cm}$ हैं। कोश $Z$ की त्रिज्या_______________$\mathrm{cm}$ है।

  • [JEE MAIN 2023]
  • A

    $4$

  • B

    $3$

  • C

    $2$

  • D

    $5$

Similar Questions

$b$ भुजा वाले एक घन के प्रत्येक शीर्ष पर $q$ आवेश है। इस आवेश विन्यास के कारण घन के केंद्र पर विध्यूत विभव तथा विध्यूत क्षेत्र ज्ञात कीजए।

$2 \,cm$ त्रिज्या की $64$ सर्वसम बूँदों में ­प्रत्येक पर ${10^{ - 9}}\,C$ आवेश रखा जाता है। अब उन्हें संयुक्त कर एक बड़ी बूँद बनायी जाती है। इसका विभव ज्ञात कीजिए

एकसमान आवेश घनत्व वाले एक गोले की कल्पना कीजिए जिसका कुल आवेश Q तथा त्रिज्या $R$ है. इस गोले के अन्दर स्थिरवैद्युत विभव के वितरण को $\emptyset(r)=\frac{Q}{4 \pi \epsilon_0 R}\left(a+b(r / R)^c\right)$ से निरूपित किया गया है. मान लीजिये कि अनंत पर विभव शून्य है. इस आधार पर $(a$, $b, c)$ के मान क्या होंगे?

  • [KVPY 2020]

प्रत्येक $10\,V$ तक आवेशित पारे की $64$ बूँदों को मिलाकर एक बड़ी बूँद बनायी गयी है। बड़ी बूँद पर विभव ........$V$ होगा (प्रत्येक बूँद गोलाकार मानी जाये) 

किसी क्षेत्र में मूल बिन्दु के चारों ओर विद्युत क्षेत्र एक समान है एवं $x$ - अक्ष के अनुदिश कार्यरत् है। मूल बिन्दु को केन्द्र मान कर एक छोटा सा वृत्त खींचा जाता है जो कि अक्षों को बिन्दुओं $A, B, C$ तथा $D$ पर काटता है। यदि इन बिन्दुओं के निर्देशांक क्रमश: $(a, 0), (0, a), (-a, 0), (0, -a)$ हैं तब किसी बिन्दु पर विभव न्यूनतम होगा