एकसमान आवेश घनत्व वाले एक गोले की कल्पना कीजिए जिसका कुल आवेश Q तथा त्रिज्या $R$ है. इस गोले के अन्दर स्थिरवैद्युत विभव के वितरण को $\emptyset(r)=\frac{Q}{4 \pi \epsilon_0 R}\left(a+b(r / R)^c\right)$ से निरूपित किया गया है. मान लीजिये कि अनंत पर विभव शून्य है. इस आधार पर $(a$, $b, c)$ के मान क्या होंगे?

  • [KVPY 2020]
  • A

    $\left(\frac{1}{2}, \frac{3}{2}, 1\right)$

  • B

    $\left(\frac{3}{2},-\frac{1}{2}, 2\right)$

  • C

    $\left(\frac{1}{2},-\frac{1}{2}, 1\right)$

  • D

    $\left(\frac{1}{2},-\frac{1}{2}, 2\right)$

Similar Questions

चार आवेश $ + Q,\, - Q,\, + Q,\, - Q$ एक वर्ग के चारों कोनों पर क्रम में रखे हैं। वर्ग के केन्द्र पर

यदि किसी आवेशित गोलीय चालक जिसकी त्रिज्या $10\,cm$ है के केन्द्र से $5\,cm$ की दूरी पर विभव $V$ है, तो इसके केन्द्र से $15\,cm$ दूरी पर विभव होगा

­x­-अक्ष पर प्रत्येक बिन्दुओं $x = {x_0},\,x = 3{x_0},\,x = 5{x_0}$.....$\infty$ पर आवेश q रखा है एवं बिन्दुओं $x = 2{x_0},\,x = 4{x_0},x = 6{x_0}$, …$\infty$ पर दूसरा आवेश -q रखा है, यहाँ ${x_0}$ धनात्मक नियतांक है। यदि किसी आवेश $Q$ से $r$ दूरी पर विभव का मान $Q/(4\pi {\varepsilon _0}r)$ हो तो उपरोक्त आवेशों के निकाय के कारण मूल बिन्दु पर विभव होगा

  • [IIT 1998]

$10$ सेमी और $15$ सेमी त्रिज्या के आवेशित गोलाकारों को पतले तार से संयोजित करने पर कोई धारा प्रवाह नहीं होती है, यदि

$X-Y$ निर्देशांक निकाय के मूल बिन्दु $(0,0)$ मी. पर $10^{-6} \mu \mathrm{C}$ का एक आवेश स्थित है। दो बिन्दु $\mathrm{P}$ और $Q$ क्रमशः $(\sqrt{3}, \sqrt{3})$ मी तथा $(\sqrt{6}, 0)$ मी पर स्थित है। बिन्दु $\mathrm{P}$ व $\mathrm{Q}$ के बीच विभान्तर होगा:

  • [JEE MAIN 2024]