$\lambda$ અને $\mu$ ની અનુક્રમે ............. કિમતો માટે સુરેખ સમીકરણ સંહિતા
$x+y+z=2$
$x+2 y+3 z=5$
$x+3 y+\lambda z=\mu$
ને અનંત ઉકેલો મળે
$5$ અને $7$
$6$ અને $8$
$4$ અને $9$
$5$ અને $8$
જો $a, b, c$ એ વિષમબાજુ ત્રિકોણની બાજુઓ હોય તો $\left| \begin{array}{*{20}{c}}
a&b&c\\
b&c&a\\
c&a&b
\end{array} \right|$ એ . . .
સમીકરણની સંહતિ $x + y + z = 2$, $2x + y - z = 3,$ $3x + 2y + kz = 4$ એ એકાકી ઉકેલ હોય તો . . . .
સુરેખ સમીકરણ સંહતિ
$2 x-y+3 z=5$
$3 x+2 y-z=7$
$4 x+5 y+\alpha z=\beta$
માટે નીચેના માથી ક્યૂ સાચું નથી?
જો $\left| {\,\begin{array}{*{20}{c}}a&b&0\\0&a&b\\b&0&a\end{array}\,} \right| = 0$, તો
જો $n \ne 3k$ અને 1, $\omega ,{\omega ^2}$ એકના ઘનમૂળ હોય , તો $\Delta = \left| {\,\begin{array}{*{20}{c}}1&{{\omega ^n}}&{{\omega ^{2n}}}\\{{\omega ^{2n}}}&1&{{\omega ^n}}\\{{\omega ^n}}&{{\omega ^{2n}}}&1\end{array}\,} \right|$ ની કિમત મેળવો.