$\lambda$ तथा $\mu$ के क्रमश: मान, जिनके लिए समीकरण निकाय $x+y+z=2$, $x+2 y+3 z=5$, $x+3 y+\lambda z=\mu$ के असंख्य हल हैं
$5$ तथा $7$
$6$ तथा $8$
$4$ तथा $9$
$5$ तथा $8$
$k \in R$ का वह मान, जिसके लिए रैखिक समीकरण निकाय
$3 x-y+4 z=3$
$x+2 y-3 z=-2$
$6 x+5 y+k z=-3$ के अनन्त हल है,
यदि $A = \left| {\,\begin{array}{*{20}{c}}1&1&1\\a&b&c\\{{a^3}}&{{b^3}}&{{c^3}}\end{array}\,} \right|,B = \left| {\,\begin{array}{*{20}{c}}1&1&1\\{{a^2}}&{{b^2}}&{{c^2}}\\{{a^3}}&{{b^3}}&{{c^3}}\end{array}\,} \right|,C = \left| {\,\begin{array}{*{20}{c}}a&b&c\\{{a^2}}&{{b^2}}&{{c^2}}\\{{a^3}}&{{b^3}}&{{c^3}}\end{array}\,} \right|,$ तो निम्न में से कौन सा सम्बन्ध सत्य है
$\left|\begin{array}{cc}x & x+1 \\ x-1 & x\end{array}\right|$ का मान ज्ञात कीजिए।
रैखिक समीकरणों का निकाय ${a_1}x + {b_1}y + {c_1}z + {d_1} = 0$, ${a_2}x + {b_2}y + {c_2}z + {d_2} = 0$ तथा ${a_3}x + {b_3}y + {c_3}z + {d_3} = 0$ पर विचार करते है। माना सारणिक $\left| {\,\begin{array}{*{20}{c}}{{a_1}}&{{b_1}}&{{c_1}}\\{{a_2}}&{{b_2}}&{{c_2}}\\{{a_3}}&{{b_3}}&{{c_3}}\end{array}\,} \right|$,$\Delta (a,b,c)$ द्वारा प्रदर्शित करते हैं यदि $\Delta (a,b,c) \ne 0$, तब समीकरणों के अद्वितीय हल के लिये $x$ का मान है
यदि ${a_1},{a_2},{a_3}.....{a_n}....$ गुणोत्तर श्रेणी में हैं, तब सारणिक $\left| {\,\begin{array}{*{20}{c}}{\log {a_n}}&{\log {a_{n + 1}}}&{\log {a_{n + 2}}}\\{\log {a_{n + 3}}}&{\log {a_{n + 4}}}&{\log {a_{n + 5}}}\\{\log {a_{n + 6}}}&{\log {a_{n + 7}}}&{\log {a_{n + 8}}}\end{array}\,} \right|$ का मान होगा