The values of $\lambda$ and $\mu$ for which the system of linear equations

$x+y+z=2$

$x+2 y+3 z=5$

$x+3 y+\lambda z=\mu$

has infinitely many solutions are, respectively

  • [JEE MAIN 2020]
  • A

    $5$ and $7$

  • B

    $6$ and $8$

  • C

    $4$ and $9$

  • D

    $5$ and $8$

Similar Questions

$\left| {\,\begin{array}{*{20}{c}}{a - 1}&a&{bc}\\{b - 1}&b&{ca}\\{c - 1}&c&{ab}\end{array}\,} \right| = $

For a real number $\alpha$, if the system

$\left[\begin{array}{ccc}1 & \alpha & \alpha^2 \\ \alpha & 1 & \alpha \\ \alpha^2 & \alpha & 1\end{array}\right]\left[\begin{array}{l}x \\ y \\ z\end{array}\right]=\left[\begin{array}{c}1 \\ -1 \\ 1\end{array}\right]$

of linear equations, has infinitely many solutions, then $1+\alpha+\alpha^2=$

  • [IIT 2017]

Value of $\left| {\begin{array}{*{20}{c}}
  0&{x - y}&{x - z} \\ 
  {y - x}&0&{y - z} \\ 
  {z - x}&{z - y}&0 
\end{array}} \right|$ is

Let the system of linear equations

$x+y+\alpha z=2$

$3 x+y+z=4$

$x+2 z=1$

have a unique solution $\left(x^{*}, y^{*}, z^{*}\right)$. If $\left(\alpha, x^{*}\right),\left(y^{*}, \alpha\right)$ and $\left(x^{*},-y^{*}\right)$ are collinear points, then the sum of absolute values of all possible values of $\alpha$ is

  • [JEE MAIN 2022]

The value of $\left| {\,\begin{array}{*{20}{c}}{{1^2}}&{{2^2}}&{{3^2}}\\{{2^2}}&{{3^2}}&{{4^2}}\\{{3^2}}&{{4^2}}&{{5^2}}\end{array}\,} \right|$ is