જો $\left| {\,\begin{array}{*{20}{c}}a&b&0\\0&a&b\\b&0&a\end{array}\,} \right| = 0$, તો

  • A

    $a$ એ એકનું ઘનમૂળ છે.

  • B

    $b$ એ એકનું ઘનમૂળ છે.

  • C

    $\left( {\frac{a}{b}} \right)$ એ એકનું ઘનમૂળ છે. 

  • D

    $\left( {\frac{a}{b}} \right)$ એ -1 નું ઘનમૂળ છે.

Similar Questions

જો $a, b, c$ એ ત્રણ સંકર સંખ્યા છે કે જેથી $a^2 + b^2 + c^2 = 0$ અને  $\left| {\begin{array}{*{20}{c}}
{\left( {{b^2} + {c^2}} \right)}&{ab}&{ac}\\
{ab}&{\left( {{c^2} + {a^2}} \right)}&{bc}\\
{ac}&{bc}&{\left( {{a^2} + {b^2}} \right)}
\end{array}} \right| = K{a^2}{b^2}{c^2}$ તો $K$ ની કિમંત મેળવો.

સમીકરણ $\left| {\,\begin{array}{*{20}{c}}{x - 1}&1&1\\1&{x - 1}&1\\1&1&{x - 1}\end{array}\,} \right| = 0$  ના બીજ મેળવો.

અહી $p$ અને $p+2$ એ અવિભાજ્ય સંખ્યા છે અને $\Delta=\left|\begin{array}{ccc}p ! & (p+1) ! & (p+2) ! \\ (p+1) ! & (p+2) ! & (p+3) ! \\ (p+2) ! & (p+3) ! & (p+4) !\end{array}\right|$ હોય તો $\alpha$ અને $\beta$ ની મહતમ કિમંતોનો સરવાળો મેળવો કે જેથી $p ^{\alpha}$ અને $( p +2)^{\beta}$ એ $\Delta$ ને વિભાજે .

  • [JEE MAIN 2022]

જો સમીકરણ સંહતિ $2 x+y+z=5$  ;   $x-y+z=3$  ;  $x+y+a z=b$  નો ઉકેલગણ ખાલીગણ હોય તો  . . . 

  • [JEE MAIN 2021]

સમીકરણની સંહતિ $x + y + z = 2$, $2x + y - z = 3,$ $3x + 2y + kz = 4$ એ એકાકી ઉકેલ હોય તો . . . .