$\left| {\,\begin{array}{*{20}{c}}{ - 1}&1&1\\1&{ - 1}&1\\1&1&{ - 1}\end{array}\,} \right|$ = . . . .

  • A

    $-4$

  • B

    $0$

  • C

    $1$

  • D

    $4$

Similar Questions

જો $a \ne p,b \ne q,c \ne r$ અને $\left| {\,\begin{array}{*{20}{c}}p&b&c\\{p + a}&{q + b}&{2c}\\a&b&r\end{array}\,} \right|$ = $0,$  તો $\frac{p}{{p - a}} + \frac{q}{{q - b}} + \frac{r}{{r - c}} = $

જો $a$, $b$, $c$, $d$, $e$, $f$ એ સમગુણોતર શ્રેણીમાં હોય તો $\left| {\begin{array}{*{20}{c}}
  {{a^2}}&{{d^2}}&x \\ 
  {{b^2}}&{{e^2}}&y \\ 
  {{c^2}}&{{f^2}}&z 
\end{array}} \right|$ એ . . . .  પર આધારિત હોય.

સમીકરણ સંહતિને ધ્યાનમાં લ્યો.

$-x+y+2 z=0$  ;   $3 x-a y+5 z=1$  ; $2 x-2 y-a z=7$

જો ગણ $S_{1}$ એ દરેક  $\mathrm{a} \in {R}$ કે જેના માટે સમીકરણ સહંતિ સુંસંગત નથી તેને સમાવે છે  અને  $S_{2}$ એ $a \in {R}$ કે જેના માટે સમીકરણને અનંત ઉકેલ તેને સમાવે છે . જો $n\left(S_{1}\right)$ અને $n\left(S_{2}\right)$ એ અનુક્રમે $S_{1}$ અને $\mathrm{S}_{2}$ ની સભ્ય સંખ્યા હોય તો 

  • [JEE MAIN 2021]

$\left| {\,\begin{array}{*{20}{c}}{19}&{17}&{15}\\9&8&7\\1&1&1\end{array}\,} \right| = $

સુરેખ સમીકરણ સંહતિ $x + \lambda y - z = 0,\lambda x - y - z = 0\;,\;x + y - \lambda z = 0$ નો શૂન્યતેર ઉકેલ . . . . . માટે છે.

  • [JEE MAIN 2016]