$\left| {\,\begin{array}{*{20}{c}}{19}&{17}&{15}\\9&8&7\\1&1&1\end{array}\,} \right| = $
$0$
$187$
$354$
$54$
$\lambda =$ ........ કિમત માટે સમીકરણની સંહતિ $x + y + z = 6,x + 2y + 3z = 10,$ $x + 2y + \lambda z = 12$ સુસંગત નથી.
$f(x)=\left|\begin{array}{ccc} \sin ^{2} x & 1+\cos ^{2} x & \cos 2 x \\ 1+\sin ^{2} x & \cos ^{2} x & \cos 2 x \\ \sin ^{2} x & \cos ^{2} x & \sin 2 x \end{array}\right|, x \in R$ નું મહત્તમ મૂલ્ય ..... છે.
ધારોકે $\alpha \beta \gamma=45 ; \alpha, \beta, \gamma \in \mathbb{R}$. જો કોઈ $x, y, z \in \mathbb{R} x y z \neq 0$
માટે $x(\alpha, 1,2)+y(1, \beta, 2)+z(2,3, \gamma)=(0,0,0)$ હોય, તો $6 \alpha+4 \beta+\gamma=$..............
જો $\left| {\,\begin{array}{*{20}{c}}5&3&{ - 1}\\{ - 7}&x&{ - 3}\\9&6&{ - 2}\end{array}\,} \right| = 0$, તો $ x$ મેળવો.
સમીકરણો સંહતિ $x + 2y -3z = 1, (k + 3) z = 3, (2k + 1)x + z = 0$ એ સુસંગત ન હોય તો $k$ મેળવો.