જો $a$, $b$, $c$, $d$, $e$, $f$ એ સમગુણોતર શ્રેણીમાં હોય તો $\left| {\begin{array}{*{20}{c}}
{{a^2}}&{{d^2}}&x \\
{{b^2}}&{{e^2}}&y \\
{{c^2}}&{{f^2}}&z
\end{array}} \right|$ એ . . . . પર આધારિત હોય.
$x, y$
$x, z$
$y, z$
એકપણ નહીં.
સમીકરણની સંહતિ $a + b - 2c = 0,$ $2a - 3b + c = 0$ અને $a - 5b + 4c = \alpha $ એ સુસંગત થવા માટે $\alpha$ મેળવો.
જો $A = \left[ {\begin{array}{*{20}{c}}\alpha &2\\2&\alpha \end{array}} \right]$ અને $|{A^3}|$=125, તો $\alpha = $
જેના માટે સમીકરણ સંહતિ
$ x+y+z=4, $
$ 2 x+5 y+5 z=17, $
$ x+2 y+\mathrm{m} z=\mathrm{n}$
ને અસંખ્ય ઉકલો હોય, તેવી $m, n$ ની કિંમતો .......... સમીક૨ણ નું સમાધાન કરે છે.
જો $'a'$ એ અવાસ્તવિક સંકર સંખ્યા છે કે જેથી સમીકરણો $ax -a^2y + a^3z= 0$ , $-a^2x + a^3y + az = 0$ અને $a^3x + ay -a^2z = 0$ ને શૂન્યતર ઉકેલ હોય તો $|a|$ મેળવો.
સમીકરણ $\left| {\,\begin{array}{*{20}{c}}{1 + x}&1&1\\1&{1 + x}&1\\1&1&{1 + x}\end{array}\,} \right| = 0$ ના બીજ મેળવો.