सारणिक $\left| {\,\begin{array}{*{20}{c}}1&a&{b + c}\\1&b&{c + a}\\1&c&{a + b}\end{array}\,} \right|$ का मान है
$a + b + c$
${(a + b + c)^2}$
$0$
$1 + a + b + c$
यदि $p + q + r = 0 = a + b + c$, तो सारणिक $\left| {\,\begin{array}{*{20}{c}}{pa}&{qb}&{rc}\\{qc}&{ra}&{pb}\\{rb}&{pc}&{qa}\end{array}\,} \right|$ का मान है
यदि $\left| {\,\begin{array}{*{20}{c}}1&k&3\\3&k&{ - 2}\\2&3&{ - 1}\end{array}\,} \right| = 0$, तो $ k $ का मान है
सारणिकों का मान ज्ञात कीजिए:
$\left|\begin{array}{ccc}0 & 1 & 2 \\ -1 & 0 & -3 \\ -2 & 3 & 0\end{array}\right|$
सारणिक $\left| {\,\begin{array}{*{20}{c}}{4 + {x^2}}&{ - 6}&{ - 2}\\{ - 6}&{9 + {x^2}}&3\\{ - 2}&3&{1 + {x^2}}\end{array}\,} \right|$ निम्न के द्वारा विभाज्य नहीं है
यदि रैखिक समीकरण निकाय $x-2 y+k z=1$, $2 x+y+z=2$, $3 x-y-k z=3$ का एक हल $( x , y , z ), z \neq 0$, है, तो $( x , y )$ जिस रेखा पर स्थित है, उसका समीकरण है