$k$  के किस मान के लिये समीकरण निकाय $x + ky - z = 0,3x - ky - z = 0$ व $x - 3y + z = 0$ का एक अशून्य हल होगा

  • [IIT 1988]
  • A

    $-1$

  • B

    $0$

  • C

    $1$

  • D

    $2$

Similar Questions

यदि समीकरणों के निकाय $x + y + z = 6$, $x + 2y + 3z = 10,$ $x + 2y + \lambda z = \mu $ का कोई हल नहीं है, तब

यदि $A$ एक $3 \times 3$ कोटि का वर्ग आव्युह है तो $|k A |$ का मान होगा:

माना $\lambda$ के सभी वास्तविक मानों, जिनके लिए समीकरण निकाय $ \lambda x+y+z=1 $ $ x+\lambda y+z=1 $ $ x+y+\lambda z=1$ असंगत है, का समुच्चय $\mathrm{S}$ है, तब $\sum_{\lambda \in S}\left(|\lambda|^2+|\lambda|\right)$ का मान है:

 

  • [JEE MAIN 2023]

यदि $\left| {\,\begin{array}{*{20}{c}}{{a_1}}&{{b_1}}&{{c_1}}\\{{a_2}}&{{b_2}}&{{c_2}}\\{{a_3}}&{{b_3}}&{{c_3}}\end{array}\,} \right| = 5$; तो $\left| {\,\begin{array}{*{20}{c}}{{b_2}{c_3} - {b_3}{c_2}}&{{c_2}{a_3} - {c_3}{a_2}}&{{a_2}{b_3} - {a_3}{b_2}}\\{{b_3}{c_1} - {b_1}{c_3}}&{{c_3}{a_1} - {c_1}{a_3}}&{{a_3}{b_1} - {a_1}{b_3}}\\{{b_1}{c_2} - {b_2}{c_1}}&{{c_1}{a_2} - {c_2}{a_1}}&{{a_1}{b_2} - {a_2}{b_1}}\end{array}\,} \right|$ का मान है

यदि $a \ne 6,b,c$ सारणिक $\left| {\,\begin{array}{*{20}{c}}a&{2b}&{2c}\\3&b&c\\4&a&b\end{array}\,} \right| = 0,$ तो $abc = $