$\left| {\,\begin{array}{*{20}{c}}1&{\cos (\beta - \alpha )}&{\cos (\gamma - \alpha )}\\{\cos (\alpha - \beta )}&1&{\cos (\gamma - \beta )}\\{\cos (\alpha - \gamma )}&{\cos (\beta - \gamma )}&1\end{array}} \right|$ = . . .

  • A

    ${\left| {\,\begin{array}{*{20}{c}}{\cos \alpha }&{\sin \alpha }&1\\{\cos \beta }&{\sin \beta }&1\\{\cos \gamma }&{\sin \gamma }&1\end{array}\,} \right|^2}$

  • B

    ${\left| {\,\begin{array}{*{20}{c}}{\sin \alpha }&{\cos \alpha }&0\\{\sin \beta }&{\cos \beta }&0\\{\sin \gamma }&{\cos \gamma }&0\end{array}\,} \right|^2}$

  • C

    ${\left| {\,\begin{array}{*{20}{c}}{\cos \alpha }&{\sin \alpha }&0\\{\sin \beta }&0&{\cos \beta }\\0&{\cos \gamma }&{\sin \gamma }\end{array}\,} \right|^2}$

  • D

    એકપણ નહી.

Similar Questions

સમીકરણ સહતિ  $x+y+z=\alpha$  ; $\alpha x+2 \alpha y+3 z=-1$  ;   $x+3 \alpha y+5 z=4$    સુસંગત થાય તેવી $\alpha$ ની કિંમતોની સંખ્યા ............ છે.

  • [JEE MAIN 2022]

જો $\left| {\,\begin{array}{*{20}{c}}a&b&c\\m&n&p\\x&y&z\end{array}\,} \right| = k$, તો $\left| {\,\begin{array}{*{20}{c}}{6a}&{2b}&{2c}\\{3m}&n&p\\{3x}&y&z\end{array}\,} \right| = $

જો ${a_1},{a_2},{a_3}.....{a_n}....$ એ સમગુણોતર શ્રેણીમાં હોય તો  $\left| {\,\begin{array}{*{20}{c}}{\log {a_n}}&{\log {a_{n + 1}}}&{\log {a_{n + 2}}}\\{\log {a_{n + 3}}}&{\log {a_{n + 4}}}&{\log {a_{n + 5}}}\\{\log {a_{n + 6}}}&{\log {a_{n + 7}}}&{\log {a_{n + 8}}}\end{array}\,} \right|$ ની કિમંત મેળવો.

  • [AIEEE 2004]

સમીકરણ સંહતિ ${x_2} - {x_3} = 1,\,\, - {x_1} + 2{x_3} = - 2,$ ${x_1} - 2{x_2} = 3$ ના ઉકેલની સંખ્યા મેળવો.

જો $a_i^2 + b_i^2 + c_i^2 = 1,\,i = 1,2,3$ અને $a_ia_j + b_ib_j +c_ic_j = 0$ $\left( {i \ne j,i,j = 1,2,3} \right)$ હોય તો નિશ્ચયક  $\left| {\begin{array}{*{20}{c}}
  {{a_1}}&{{a_2}}&{{a_3}} \\ 
  {{b_1}}&{{b_2}}&{{b_3}} \\ 
  {{c_1}}&{{c_2}}&{{c_3}} 
\end{array}} \right|$ ની કિમંત મેળવો.