જો ${a_1},{a_2},{a_3}.....{a_n}....$ એ સમગુણોતર શ્રેણીમાં હોય તો $\left| {\,\begin{array}{*{20}{c}}{\log {a_n}}&{\log {a_{n + 1}}}&{\log {a_{n + 2}}}\\{\log {a_{n + 3}}}&{\log {a_{n + 4}}}&{\log {a_{n + 5}}}\\{\log {a_{n + 6}}}&{\log {a_{n + 7}}}&{\log {a_{n + 8}}}\end{array}\,} \right|$ ની કિમંત મેળવો.
$-2$
$1$
$2$
$0$
જો $\left| {\,\begin{array}{*{20}{c}}a&b&{a + b}\\b&c&{b + c}\\{a + b}&{b + c}&0\end{array}\,} \right| = 0$; તો $a,b,c$ એ .. . . શ્રેણીમાં છે .
નિશ્ચાયકનો ઉપયોગ કરી $(3, 1)$ અને $(9, 3)$ ને જોડતી રેખાનું સમીકરણ શોધો.
જો સમીકરણ સંહતિ $x+y+z=6 \,; \,2 x+5 y+\alpha z=\beta \,; \, x+2 y+3 z=14$ એ અનંત ઉકેલ ધરાવે છે તો $\alpha+\beta$ ની કિમંત મેળવો.
ધારોકે $\alpha \beta \gamma=45 ; \alpha, \beta, \gamma \in \mathbb{R}$. જો કોઈ $x, y, z \in \mathbb{R} x y z \neq 0$
માટે $x(\alpha, 1,2)+y(1, \beta, 2)+z(2,3, \gamma)=(0,0,0)$ હોય, તો $6 \alpha+4 \beta+\gamma=$..............
જો $a\, -\, 2b + c = 1$ હોય તો $\left| {\begin{array}{*{20}{c}}
{x + 1}&{x + 2}&{x + a} \\
{x + 2}&{x + 3}&{x + b} \\
{x + 3}&{x + 4}&{x + c}
\end{array}} \right|$ મેળવો.