જો $\left| {\,\begin{array}{*{20}{c}}a&b&c\\m&n&p\\x&y&z\end{array}\,} \right| = k$, તો $\left| {\,\begin{array}{*{20}{c}}{6a}&{2b}&{2c}\\{3m}&n&p\\{3x}&y&z\end{array}\,} \right| = $

  • A

    $k/6$

  • B

    $2k$

  • C

    $3k$

  • D

    $6k$

Similar Questions

જો $a, b, c$ એ ત્રણ સંકર સંખ્યા છે કે જેથી $a^2 + b^2 + c^2 = 0$ અને  $\left| {\begin{array}{*{20}{c}}
{\left( {{b^2} + {c^2}} \right)}&{ab}&{ac}\\
{ab}&{\left( {{c^2} + {a^2}} \right)}&{bc}\\
{ac}&{bc}&{\left( {{a^2} + {b^2}} \right)}
\end{array}} \right| = K{a^2}{b^2}{c^2}$ તો $K$ ની કિમંત મેળવો.

$\left| {\begin{array}{*{20}{c}}
{4 + {x^2}}&{ - 6}&{ - 2}\\
{ - 6}&{9 + {x^2}}&3\\
{ - 2}&3&{1 + {x^2}}
\end{array}} \right|$ $;(x\neq0)$ એ . . . વડે વિભાજ્ય નથી .

ધારો કે $A (1, \alpha)$, $B (\alpha, 0)$ અને $C (0, \alpha)$ શિરોબિંદુઆવાળા ત્રિકોણનું ક્ષેત્રફળ $4$ ચોરસ એકમ છે. જો બિંદુઆ $(\alpha,-\alpha),(-\alpha, \alpha)$ અને $\left(\alpha^{2}, \beta\right)$ સમરેખ હોય, તો $\beta$ =...........

  • [JEE MAIN 2022]

સમીકરણ સંહતિને $2{x_1} - 2{x_2} + {x_3} = \lambda {x_1}\;,\;2{x_1} - 3{x_2} + 2{x_3} = \lambda {x_2}\;\;,\;\; - {x_1} + 2{x_2} = \lambda {x_3}$ યોગ્ય ઉકેલ હોય તેવા બધાજ $\lambda $ ઓનો ગણ . . . . . . છે.

  • [JEE MAIN 2015]

જો $[.]$ , $ \{.\} $ અને $sgn$$(.)$ અનુક્રમે  મહતમ પૃણાંક , પૃણાંક વિધેય, અને ચિન્હ વિધેય છે તો

$\left| {\begin{array}{*{20}{c}}
  {\left[ \pi  \right]}&{amp(1 + i\sqrt 3 )}&1 \\ 
  1&0&2 \\ 
  {\operatorname{sgn} ({{\cot }^{ - 1}}x)}&1&{\{ \pi \} } 
\end{array}} \right|$ ની કિમંત મેળવો.