જો $\left| {\,\begin{array}{*{20}{c}}a&b&c\\m&n&p\\x&y&z\end{array}\,} \right| = k$, તો $\left| {\,\begin{array}{*{20}{c}}{6a}&{2b}&{2c}\\{3m}&n&p\\{3x}&y&z\end{array}\,} \right| = $
$k/6$
$2k$
$3k$
$6k$
જો $a, b, c$ એ ત્રણ સંકર સંખ્યા છે કે જેથી $a^2 + b^2 + c^2 = 0$ અને $\left| {\begin{array}{*{20}{c}}
{\left( {{b^2} + {c^2}} \right)}&{ab}&{ac}\\
{ab}&{\left( {{c^2} + {a^2}} \right)}&{bc}\\
{ac}&{bc}&{\left( {{a^2} + {b^2}} \right)}
\end{array}} \right| = K{a^2}{b^2}{c^2}$ તો $K$ ની કિમંત મેળવો.
$\left| {\begin{array}{*{20}{c}}
{4 + {x^2}}&{ - 6}&{ - 2}\\
{ - 6}&{9 + {x^2}}&3\\
{ - 2}&3&{1 + {x^2}}
\end{array}} \right|$ $;(x\neq0)$ એ . . . વડે વિભાજ્ય નથી .
ધારો કે $A (1, \alpha)$, $B (\alpha, 0)$ અને $C (0, \alpha)$ શિરોબિંદુઆવાળા ત્રિકોણનું ક્ષેત્રફળ $4$ ચોરસ એકમ છે. જો બિંદુઆ $(\alpha,-\alpha),(-\alpha, \alpha)$ અને $\left(\alpha^{2}, \beta\right)$ સમરેખ હોય, તો $\beta$ =...........
સમીકરણ સંહતિને $2{x_1} - 2{x_2} + {x_3} = \lambda {x_1}\;,\;2{x_1} - 3{x_2} + 2{x_3} = \lambda {x_2}\;\;,\;\; - {x_1} + 2{x_2} = \lambda {x_3}$ યોગ્ય ઉકેલ હોય તેવા બધાજ $\lambda $ ઓનો ગણ . . . . . . છે.
જો $[.]$ , $ \{.\} $ અને $sgn$$(.)$ અનુક્રમે મહતમ પૃણાંક , પૃણાંક વિધેય, અને ચિન્હ વિધેય છે તો
$\left| {\begin{array}{*{20}{c}}
{\left[ \pi \right]}&{amp(1 + i\sqrt 3 )}&1 \\
1&0&2 \\
{\operatorname{sgn} ({{\cot }^{ - 1}}x)}&1&{\{ \pi \} }
\end{array}} \right|$ ની કિમંત મેળવો.