$\sum_{\mathrm{r}=0}^{22}{ }^{22} \mathrm{C}_{\mathrm{r}}{ }^{23} \mathrm{C}_{\mathrm{r}}$ का मान है
${ }^{45} C _{23}$
${ }^{44} C _{23}$
${ }^{45} C _{24}$
${ }^{44} C _{22}$
पूर्णांकों $n$ तथा $r$ के लिए,
माना $\left(\begin{array}{l} n \\ r \end{array}\right)=\left\{\begin{array}{cc}{ }^{ n } C _{ r }, & \text { if } n \geq r \geq 0 \\ 0, & \text { otherwise }\end{array}\right.$ तो $k$ का वह अधिकतम मान, जिसके लिए, योगफल $\sum_{i=0}^{k}\left(\begin{array}{c}10 \\ 1\end{array}\right)\left(\begin{array}{c}15 \\ k-i\end{array}\right)+\sum_{i=0}^{k+1}\left(\begin{array}{c}12 \\ i\end{array}\right)\left(\begin{array}{c}13 \\ k+1-i\end{array}\right)$ का अस्तित्व है, ........... |
यदि ${a_k} = \frac{1}{{k(k + 1)}},$ जबकि $k = 1,\,2,\,3,\,4,.....,\,n$, तब ${\left( {\sum\limits_{k = 1}^n {{a_k}} } \right)^2} = $
यदि $^n{C_r}$ के लिए ${C_r}$ को प्रयुक्त किया जाता हो, तो श्रेणी $\frac{{2(n/2)!(n/2)!}}{{n!}}[C_0^2 - 2C_1^2 + 3C_2^2 - ..... + {( - 1)^n}(n + 1)C_n^2]$,
जहाँ $n$ सम धनात्मक पूर्णांक है, का योग होगा
$(1+x)^{500}+x(1+x)^{499}+x^2(1+x)^{498}+\ldots . .+x^{500}$ में $\mathrm{x}^{301}$ का गुणांक है :
${(1 + x)^n}$के प्रसार में $x$ की विषम घातों के गुणांकों का योग है