पूर्णांकों $n$ तथा $r$ के लिए,
माना $\left(\begin{array}{l} n \\ r \end{array}\right)=\left\{\begin{array}{cc}{ }^{ n } C _{ r }, & \text { if } n \geq r \geq 0 \\ 0, & \text { otherwise }\end{array}\right.$ तो $k$ का वह अधिकतम मान, जिसके लिए, योगफल $\sum_{i=0}^{k}\left(\begin{array}{c}10 \\ 1\end{array}\right)\left(\begin{array}{c}15 \\ k-i\end{array}\right)+\sum_{i=0}^{k+1}\left(\begin{array}{c}12 \\ i\end{array}\right)\left(\begin{array}{c}13 \\ k+1-i\end{array}\right)$ का अस्तित्व है, ........... |
Not define
$24$
$36$
$20$
$\sum_{\mathrm{r}=0}^{22}{ }^{22} \mathrm{C}_{\mathrm{r}}{ }^{23} \mathrm{C}_{\mathrm{r}}$ का मान है
$(1-2 \sqrt{x})^{50}$ के द्विपद प्रसार में $x$ की पूर्णांकीय घातों के गुणांकों का योग है
$\frac{1}{1 ! 50 !}+\frac{1}{3 ! 48 !}+\frac{1}{5 ! 46 !}+\ldots+\frac{1}{49 ! 2 !}+\frac{1}{51 ! 1 !}$ का मान है:
$\left( {\begin{array}{*{20}{c}}n\\0\end{array}} \right) + 2\,\left( {\begin{array}{*{20}{c}}n\\1\end{array}} \right) + {2^2}\left( {\begin{array}{*{20}{c}}n\\2\end{array}} \right) + ..... + {2^n}\left( {\begin{array}{*{20}{c}}n\\n\end{array}} \right)$ का मान होगा
माना $\left(1+x+2 x^{2}\right)^{20}=a_{0}+a_{1} x+a_{2} x^{2}+\ldots+a_{40} x^{40}$ है। तो $a_{1}+a_{3}+a_{5}+\ldots+a_{37}$ बराबर है