The value $\sum \limits_{ r =0}^{22}{ }^{22} C _{ r }{ }^{23} C _{ r }$ is $.......$
${ }^{45} C _{23}$
${ }^{44} C _{23}$
${ }^{45} C _{24}$
${ }^{44} C _{22}$
$\frac{{{C_0}}}{1} + \frac{{{C_2}}}{3} + \frac{{{C_4}}}{5} + \frac{{{C_6}}}{7} + ....$=
The expression $x^3 - 3x^2 - 9x + c$ can be written in the form $(x - a)^2 (x - b)$ if the values of $c$ is
If $S_n =$$\sum\limits_{r = 0}^n {\frac{1}{{^n{C_r}}}} $ and $T_n =$$\sum\limits_{r = 0}^n {\frac{r}{{^n{C_r}}}} $ then $\frac{{{T_n}}}{{{S_n}}}$ is equal to
Let $n$ be an odd integer. If $\sin n\theta = \sum\limits_{r = 0}^n {{b_r}{{\sin }^r}\theta } $ for every value of $\theta $, then
The sum of coefficients in the expansion of ${(1 + x + {x^2})^n}$ is