${\left( {\sqrt {\frac{x}{3}} + \frac{3}{{2{x^2}}}} \right)^{10}}$ के विस्तार में $x$ से स्वतंत्र पद होगा
$3\over2$
$5\over4$
$5\over2$
इनमें से कोर्इ नहीं
${(1 + x)^{2n}}$ के विस्तार में मध्य पद होगा
यदि $n$, बहुपद ${\left[ {\frac{1}{{\sqrt {5{x^3} + 1} - \sqrt {5{x^3} - 1} }}} \right]^8} $$+ {\left[ {\frac{1}{{\sqrt {5{x^3} + 1} + \sqrt {5{x^3} - 1} }}} \right]^8}$ की घात है, तथा $m$ इसमें स्थित $x ^{ n }$ का गुणांक है, तो क्रमित युग्म $( n , m )$ बराबर है $:$
यदि $x$ की घातों (powers) में, व्यंजक $\left(1+ ax + bx ^{2}\right)$ $(1-3 x)^{15}$ के प्रसार में $x^{2}$ तथा $x^{3}$ दोनों के गुणांक शून्य के बराबर हैं, तो क्रमित युग्म $( a , b )$ बराबर है
निम्नलिखित के प्रसार में व्यापक पद लिखिए
$\left(x^{2}-y x\right)^{12}, x \neq 0$
${\left( {x - \frac{1}{{2x}}} \right)^8}$ के विस्तार में ${x^2}$ का गुणांक होगा