The term independent of $x$ in the expansion of ${\left( {\sqrt {\frac{x}{3}} + \frac{3}{{2{x^2}}}} \right)^{10}}$ will be
$3\over2$
$5\over4$
$5\over2$
None of these
Evaluate $(\sqrt{3}+\sqrt{2})^{6}-(\sqrt{3}-\sqrt{2})^{6}$
Let $m$ be the smallest positive integer such that the coefficient of $x^2$ in the expansion of $(1+x)^2+(1+x)^3+\cdots+(1+x)^{49}+(1+m x)^{50}$ is $(3 n+1)^{51} C_3$ for some positive integer $n$. Then the value of $n$ is
Coefficient of $x$ in the expansion of ${\left( {{x^2} + \frac{a}{x}} \right)^5}$ is
The coefficient of $x^{10}$ in the expansion of $(1 + x)^2 (1 + x^2)^3 ( 1 + x^3)^4$ is euqal to
Show that the coefficient of the middle term in the expansion of $(1+x)^{2 n}$ is equal to the sum of the coefficients of two middle terms in the expansion of $(1+x)^{2 n-1}$