રેખીય સમીકરણની સિસ્ટમ $x + y + z = 2, 2x + 3y + 2z = 5$, $2x + 3y + (a^2 -1)\,z = a + 1$ તો
સુસંગત નથી જ્યારે $a = 4$
એકાકી ઉકેલ ધરાવે જ્યારે $\left| a \right| = \sqrt 3 $
અનંત ઉકેલ ધરાવે જ્યારે $a = 4$
સુસંગત નથી જ્યારે $\left| a \right| = \sqrt 3 $
જો $\omega $ એ એકનું કાલ્પનિક ઘનમૂળ હોય તો $\Delta = \left| {\begin{array}{*{20}{c}}1&{2\omega }\\\omega &{{\omega ^2}}\end{array}} \right|$, તો ${\Delta ^2}$ = . . .
$\theta \in(0,4 \pi)$ ની કેટલી કિમંતો માટે સમીકરણ સંહતિ $3(\sin 3 \theta) x-y+z=2$, $3(\cos 2 \theta) x+4 y+3 z=3$, $6 x+7 y+7 z=9$ ને એકપણ ઉકેલ ન હોય.
જો $a \ne b \ne c,$ તો સમીકરણ $\left| {\,\begin{array}{*{20}{c}}0&{x - a}&{x - b}\\{x + a}&0&{x - c}\\{x + b}&{x + c}&0\end{array}\,} \right| = 0$ નું સમાધાન કરે તેવી $x$ ની કિમત મેળવો.
નીચે આપેલામાંથી કયું વિધાન સત્ય છે ?
સુરેખ સમીકરણ સંહતિ $x+y+z=4 \mu, x+2 y+2 \lambda z=10 \mu, x+3 y+4 \lambda^2 z=\mu^2+15$ ધ્યાને લો, જ્યાં $\lambda$, $\mu \in R$. નીચેના વિધાનો પૈકી ક્યું એક સાચું નથી ?