જો સુરેખ સમીકરણો $kx + y + z =1$ $x + ky + z = k$ અને $x + y + zk = k ^{2}$ એ એકપણ ઉકેલ નો ધરાવે તો $k$ ની કિમંત મેળવો.

  • [JEE MAIN 2021]
  • A

    $0$

  • B

    $1$

  • C

    $-1$

  • D

    $-2$

Similar Questions

સમીકરણ $-3 x^4+\operatorname{det}\left[\begin{array}{ccc}1 & x & x^2 \\ 1 & x^2 & x^4 \\ 1 & x^3 & x^6\end{array}\right]=0$ નું સમાધાન કરતી $x$ ની પૂર્ણાંક કિમંતો મેળવો.

  • [KVPY 2019]

જો ${a_1},{a_2},{a_3}.....{a_n}....$ એ સમગુણોતર શ્રેણીમાં હોય તો  $\left| {\,\begin{array}{*{20}{c}}{\log {a_n}}&{\log {a_{n + 1}}}&{\log {a_{n + 2}}}\\{\log {a_{n + 3}}}&{\log {a_{n + 4}}}&{\log {a_{n + 5}}}\\{\log {a_{n + 6}}}&{\log {a_{n + 7}}}&{\log {a_{n + 8}}}\end{array}\,} \right|$ ની કિમંત મેળવો.

  • [AIEEE 2005]

સમીકરણ સંહતિને ધ્યાનમાં લ્યો.

$-x+y+2 z=0$  ;   $3 x-a y+5 z=1$  ; $2 x-2 y-a z=7$

જો ગણ $S_{1}$ એ દરેક  $\mathrm{a} \in {R}$ કે જેના માટે સમીકરણ સહંતિ સુંસંગત નથી તેને સમાવે છે  અને  $S_{2}$ એ $a \in {R}$ કે જેના માટે સમીકરણને અનંત ઉકેલ તેને સમાવે છે . જો $n\left(S_{1}\right)$ અને $n\left(S_{2}\right)$ એ અનુક્રમે $S_{1}$ અને $\mathrm{S}_{2}$ ની સભ્ય સંખ્યા હોય તો 

  • [JEE MAIN 2021]

જો $S$ એ $\lambda \in \mathrm{R}$ ની બધી કિમતોનો ગણ છે કે જ્યાં સુરેખ સંહિતા 

$2 x-y+2 z=2$

$x-2 y+\lambda z=-4$

$x+\lambda y+z=4$

ને એક પણ ઉકેલ ના હોય તો ગણ $S$ માં 

  • [JEE MAIN 2020]

શૂન્યતર $a,b,c$ માટે જો $\Delta = \left| {\,\begin{array}{*{20}{c}}{1 + a}&1&1\\1&{1 + b}&1\\1&1&{1 + c}\end{array}} \right| = 0$, તો $\frac{1}{a} + \frac{1}{b} + \frac{1}{c} = . . $