The system of equations $kx + y + z =1$ $x + ky + z = k$ and $x + y + zk = k ^{2}$ has no solution if $k$ is equal to
$0$
$1$
$-1$
$-2$
If the system of linear equations $2 x+3 y-z=-2$ ; $x+y+z=4$ ; $x-y+|\lambda| z=4 \lambda-4$ (where $\lambda \in R$), has no solution, then
$\left| {\,\begin{array}{*{20}{c}}{a - 1}&a&{bc}\\{b - 1}&b&{ca}\\{c - 1}&c&{ab}\end{array}\,} \right| = $
For the system of linear equations
$2 x-y+3 z=5$
$3 x+2 y-z=7$
$4 x+5 y+\alpha z=\beta$
Which of the following is NOT correct ?
$\left| {\,\begin{array}{*{20}{c}}a&b&c\\b&c&a\\c&a&b\end{array}\,} \right| = $
If $B$ is a $3 \times 3$ matrix such that $B^2 = 0$, then det. $[( I+ B)^{50} -50B]$ is equal to