दो संख्याओं का योगफल उनके गुणोत्तर माध्य का $6$ गुना है तो दिखाइए कि संख्याएँ $(3+2 \sqrt{2}):(3-2 \sqrt{2})$ के अनुपात में हैं।
Le the two numbers be $a$ and $b$
$G.M.$ $=\sqrt{a b}$
According to the given condition,
$a+b=6 \sqrt{a b}$ ..........$(1)$
$\Rightarrow(a+b)^{2}=36(a b)$
Also,
$(a-b)^{2}=(a+b)^{2}-4 a b=36 a b-4 a b=32 a b$
$\Rightarrow a-b=\sqrt{32} \sqrt{a b}$
$=4 \sqrt{2} \sqrt{a b}$ .........$(2)$
Adding $(1)$ and $(2),$ we obtain
$2 a=(6+4 \sqrt{2}) \sqrt{a b}$
$a=(3+2 \sqrt{2}) \sqrt{a b}$
Substituting the value of $a$ in $(1),$ we obtain
$b=6 \sqrt{a b}-(3+2 \sqrt{2}) \sqrt{a b}$
$\Rightarrow b=(3-2 \sqrt{2}) \sqrt{a b}$
$\frac{a}{b}=\frac{(3+2 \sqrt{2}) \sqrt{a b}}{(3-2 \sqrt{2}) \sqrt{a b}}=\frac{3+2 \sqrt{2}}{3-2 \sqrt{2}}$
Thus, the required ratio is $(3+2 \sqrt{2}):(3-2 \sqrt{2})$
ऐसी दो संख्याएँ ज्ञात कीजिए जिनको $3$ तथा $81$ के बीच रखने पर प्राप्त अनुक्रम एक गुणोत्तर श्रेणी बन जाय।
एक व्यक्ति की दसवीं पीढ़ी तक पूर्वजों की संख्या कितनी होगी, जबकि उसके $2$ माता-पिता, $4$ दादा-दादी, $8$ पर दादा, पर दादी तथा आदि हैं।
श्रेणी $(\sqrt 2 + 1),\;1,\;(\sqrt 2 - 1)$ है
एक समान्तर श्रेणी, गुणोत्तर श्रेणी तथा हरात्मक श्रेणी समान प्रथम तथा अन्तिम पद रखते हैं। तीनों श्रेणियों में पदों की संख्या विषम है, तब तीनों श्रेणियों के मध्य पद होंगे
यदि दो संख्याओं के मध्य दो गुणोत्तर माध्य ${G_1}$ व ${G_2}$ तथा समान्तर माध्य $A$ रखे जावें, तब $\frac{{G_1^2}}{{{G_2}}} + \frac{{G_2^2}}{{{G_1}}}$ का मान होगा