The sum of two numbers is $6$ times their geometric mean, show that numbers are in the ratio $(3+2 \sqrt{2}):(3-2 \sqrt{2})$

Vedclass pdf generator app on play store
Vedclass iOS app on app store

Le the two numbers be $a$ and $b$

$G.M.$ $=\sqrt{a b}$

According to the given condition,

$a+b=6 \sqrt{a b}$        ..........$(1)$

$\Rightarrow(a+b)^{2}=36(a b)$

Also,

$(a-b)^{2}=(a+b)^{2}-4 a b=36 a b-4 a b=32 a b$

$\Rightarrow a-b=\sqrt{32} \sqrt{a b}$

$=4 \sqrt{2} \sqrt{a b}$         .........$(2)$

Adding $(1)$ and $(2),$ we obtain

$2 a=(6+4 \sqrt{2}) \sqrt{a b}$

$a=(3+2 \sqrt{2}) \sqrt{a b}$

Substituting the value of $a$ in $(1),$ we obtain

$b=6 \sqrt{a b}-(3+2 \sqrt{2}) \sqrt{a b}$

$\Rightarrow b=(3-2 \sqrt{2}) \sqrt{a b}$

$\frac{a}{b}=\frac{(3+2 \sqrt{2}) \sqrt{a b}}{(3-2 \sqrt{2}) \sqrt{a b}}=\frac{3+2 \sqrt{2}}{3-2 \sqrt{2}}$

Thus, the required ratio is $(3+2 \sqrt{2}):(3-2 \sqrt{2})$

Similar Questions

If ${a^2} + a{b^2} + 16{c^2} = 2(3ab + 6bc + 4ac)$, where $a,b,c$ are non-zero numbers. Then $a,b,c$ are in

The sum of infinite terms of the geometric progression $\frac{{\sqrt 2 + 1}}{{\sqrt 2 - 1}},\frac{1}{{2 - \sqrt 2 }},\frac{1}{2}.....$ is

Let $n \geq 3$ and let $C_1, C_2, \ldots, C_n$, be circles with radii $r_1, r_2, \ldots, r_n$, respectively. Assume that $C_i$ and $C_{i+1}$ touch externally for $1 \leq i \leq n-1$. It is also given that the $X$-axis and the line $y=2 \sqrt{2} x+10$ are tangential to each of the circles. Then, $r_1, r_2, \ldots, r_n$ are in

  • [KVPY 2014]

If $n$ geometric means be inserted between $a$ and $b$ then the ${n^{th}}$ geometric mean will be

If ${\log _a}x,\;{\log _b}x,\;{\log _c}x$ be in $H.P.$, then $a,\;b,\;c$ are in