The sum of two numbers is $6$ times their geometric mean, show that numbers are in the ratio $(3+2 \sqrt{2}):(3-2 \sqrt{2})$
Le the two numbers be $a$ and $b$
$G.M.$ $=\sqrt{a b}$
According to the given condition,
$a+b=6 \sqrt{a b}$ ..........$(1)$
$\Rightarrow(a+b)^{2}=36(a b)$
Also,
$(a-b)^{2}=(a+b)^{2}-4 a b=36 a b-4 a b=32 a b$
$\Rightarrow a-b=\sqrt{32} \sqrt{a b}$
$=4 \sqrt{2} \sqrt{a b}$ .........$(2)$
Adding $(1)$ and $(2),$ we obtain
$2 a=(6+4 \sqrt{2}) \sqrt{a b}$
$a=(3+2 \sqrt{2}) \sqrt{a b}$
Substituting the value of $a$ in $(1),$ we obtain
$b=6 \sqrt{a b}-(3+2 \sqrt{2}) \sqrt{a b}$
$\Rightarrow b=(3-2 \sqrt{2}) \sqrt{a b}$
$\frac{a}{b}=\frac{(3+2 \sqrt{2}) \sqrt{a b}}{(3-2 \sqrt{2}) \sqrt{a b}}=\frac{3+2 \sqrt{2}}{3-2 \sqrt{2}}$
Thus, the required ratio is $(3+2 \sqrt{2}):(3-2 \sqrt{2})$
If ${a^2} + a{b^2} + 16{c^2} = 2(3ab + 6bc + 4ac)$, where $a,b,c$ are non-zero numbers. Then $a,b,c$ are in
The sum of infinite terms of the geometric progression $\frac{{\sqrt 2 + 1}}{{\sqrt 2 - 1}},\frac{1}{{2 - \sqrt 2 }},\frac{1}{2}.....$ is
Let $n \geq 3$ and let $C_1, C_2, \ldots, C_n$, be circles with radii $r_1, r_2, \ldots, r_n$, respectively. Assume that $C_i$ and $C_{i+1}$ touch externally for $1 \leq i \leq n-1$. It is also given that the $X$-axis and the line $y=2 \sqrt{2} x+10$ are tangential to each of the circles. Then, $r_1, r_2, \ldots, r_n$ are in
If $n$ geometric means be inserted between $a$ and $b$ then the ${n^{th}}$ geometric mean will be
If ${\log _a}x,\;{\log _b}x,\;{\log _c}x$ be in $H.P.$, then $a,\;b,\;c$ are in