The sum of the coefficients of even power of $x$ in the expansion of ${(1 + x + {x^2} + {x^3})^5}$ is

  • A

    $256$

  • B

    $128$

  • C

    $512$

  • D

    $64$

Similar Questions

Statement $-1$: $\mathop \sum \limits_{r = 0}^n \left( {r + 1} \right)\left( {\begin{array}{*{20}{c}}n\\r\end{array}} \right) = \left( {n + 2} \right){2^{n - 1}}$

Statement $-2$:$\;\mathop \sum \limits_{r = 0}^n \left( {r + 1} \right)\left( {\begin{array}{*{20}{c}}n\\r\end{array}} \right){x^r}\; = {\left( {1 + x} \right)^n} + nx{\left( {1 + x} \right)^{n - 1}}$

  • [AIEEE 2008]

Coefficient of $x^{19}$ in the polynomial $(x-1) (x-2^1) (x-2^2) .... (x-2^{19})$ is

If $x + y = 1$, then $\sum\limits_{r = 0}^n {{r^2}{\,^n}{C_r}{x^r}{y^{n - r}}} $ equals

Coefficients of ${x^r}[0 \le r \le (n - 1)]$ in the expansion of ${(x + 3)^{n - 1}} + {(x + 3)^{n - 2}}(x + 2)$$ + {(x + 3)^{n - 3}}{(x + 2)^2} + ... + {(x + 2)^{n - 1}}$

The sum to $(n + 1)$ terms of the series $\frac{{{C_0}}}{2} - \frac{{{C_1}}}{3} + \frac{{{C_2}}}{4} - \frac{{{C_3}}}{5} + ...$ is