The sum to $(n + 1)$ terms of the series $\frac{{{C_0}}}{2} - \frac{{{C_1}}}{3} + \frac{{{C_2}}}{4} - \frac{{{C_3}}}{5} + ...$ is
$\frac{1}{{n + 1}}$
$\frac{1}{{n + 2}}$
$\frac{1}{{n\left( {n + 1} \right)}}$
none of these
Let $C _{ r }$ denote the binomial coefficient of $x ^{ r }$ in the expansion of $(1+x)^{10}$. If $\alpha, \beta \in R$. $C _{1}+3 \cdot 2 C _{2}+5 \cdot 3 C _{3}+\ldots$ upto $10$ terms $=\frac{\alpha \times 2^{11}}{2^{\beta}-1}\left( C _{0}+\frac{ C _{1}}{2}+\frac{ C _{2}}{3}+\ldots . .\right.$ upto 10 terms $)$ then the value of $\alpha+\beta$ is equal to
The value $\sum \limits_{ r =0}^{22}{ }^{22} C _{ r }{ }^{23} C _{ r }$ is $.......$
The sum of last eigth coefficients in the expansion of $(1 + x)^{15}$ is :-
The sum of coefficients of integral power of $x$ in the binomial expansion ${\left( {1 - 2\sqrt x } \right)^{50}}$ is :
If ${C_r}$ stands for $^n{C_r}$, the sum of the given series $\frac{{2(n/2)!(n/2)!}}{{n!}}[C_0^2 - 2C_1^2 + 3C_2^2 - ..... + {( - 1)^n}(n + 1)C_n^2]$, Where $n$ is an even positive integer, is