Coefficients of ${x^r}[0 \le r \le (n - 1)]$ in the expansion of ${(x + 3)^{n - 1}} + {(x + 3)^{n - 2}}(x + 2)$$ + {(x + 3)^{n - 3}}{(x + 2)^2} + ... + {(x + 2)^{n - 1}}$
$^n{C_r}({3^r} - {2^n})$
$^n{C_r}({3^{n - r}} - {2^{n - r}})$
$^n{C_r}({3^r} + {2^{n - r}})$
None of these
If $^{20}{C_1} + \left( {{2^2}} \right){\,^{20}}{C_3} + \left( {{3^2}} \right){\,^{20}}{C_3} + \left( {{2^2}} \right) + ..... + \left( {{{20}^2}} \right){\,^{20}}{C_{20}} = A\left( {{2^\beta }} \right)$, then the ordered pair $(A, \beta )$ is equal to
In the expansion of ${(1 + x)^5}$, the sum of the coefficient of the terms is
In the expansion of ${(1 + x)^n}$ the sum of coefficients of odd powers of $x$ is
In the polynomial $(x - 1)(x - 2)(x - 3).............(x - 100),$ the coefficient of ${x^{99}}$ is
What is the sum of the coefficients of ${({x^2} - x - 1)^{99}}$