Coefficient of $x^{19}$ in the polynomial $(x-1) (x-2^1) (x-2^2) .... (x-2^{19})$ is

  • A

    $2^{20} -\,2^{19}$

  • B

    $-(2^{20} -1)$

  • C

    $2^{20}$

  • D

    None

Similar Questions

If $\sum_{ r =1}^{30} \frac{ r ^2\left({ }^{30} C _{ r }\right)^2}{{ }^{30} C _{ r -1}}=\alpha \times 2^{29}$, then $\alpha$ is equal to

  • [JEE MAIN 2025]

If ${(1 + x)^n} = {C_0} + {C_1}x + {C_2}{x^2} + .......... + {C_n}{x^2},$ then $C_0^2 + C_1^2 + C_2^2 + C_3^2 + ...... + C_n^2$ =

The coefficient of $x^9$ in the polynomial given by $\sum\limits_{r - 1}^{11} {(x + r)\,(x + r + 1)\,(x + r + 2)...\,(x + r + 9)}$ is

If ${\sum\limits_{i = 1}^{20} {\left( {\frac{{{}^{20}{C_{i - 1}}}}{{{}^{20}{C_i} + {}^{20}{C_{i - 1}}}}} \right)} ^3}\, = \frac{k}{{21}}$, then $k$ equals

  • [JEE MAIN 2019]

If the expansion in powers of $x$ of the function  $\frac{1}{{\left( {1 - ax} \right)\left( {1 - bx} \right)}}$ is ${a_0} + {a_1}x + {a_2}{x^2} + \;{a_3}{x^3} + \; \ldots......$ then  ${a_n}$ is

  • [AIEEE 2006]