If $x + y = 1$, then $\sum\limits_{r = 0}^n {{r^2}{\,^n}{C_r}{x^r}{y^{n - r}}} $ equals
$nxy$
$nx(x + yn)$
$nx(nx + y)$
None of these
Let $a =$ Minimum $\{x^2 + 2x + 3, x \in R\}$ and $b = \mathop {\lim }\limits_{\theta \to 0} \frac{{1 - \cos \theta }}{{{\theta ^2}}}$ The value of $\sum\limits_{r = 0}^n {{a^r}.{b^{n - r}}} $ is
If for positive integers $r> 1, n > 2$, the coefficients of the $(3r)^{th}$ and $(r + 2)^{th}$ powers of $x$ in the expansion of $( 1 + x)^{2n}$ are equal, then $n$ is equal to
The sum of the coefficients in the expansion of ${(x + y)^n}$ is $4096$. The greatest coefficient in the expansion is
${C_1} + 2{C_2} + 3{C_3} + 4{C_4} + .... + n{C_n} = $
The sum to $(n + 1)$ terms of the series $\frac{{{C_0}}}{2} - \frac{{{C_1}}}{3} + \frac{{{C_2}}}{4} - \frac{{{C_3}}}{5} + ...$ is