$10$ प्रेक्षणों का माध्य $50$ है, इस माध्य से विचलनों के वर्गों का योग $250$ है। प्रसरण गुणांक का मान......$\%$ है
$50$
$10$
$40$
इनमें से कोई नहीं
यदि आंकड़ों $6,10,7,13, a , 12, b , 12$ का माध्य तथा प्रसरण क्रमशः $9$ तथा $\frac{37}{4}$ हैं, तो $(a-b)^{2}$ बराबर है
आँकड़ों $2, 4, 6, 8, 10$ का प्रसरण है
माना कि $X$ एक याद्छिक चर (random variable) है, और माना कि $P(X=x), X$ के मान $x$ लेने की प्रायिकता (probability) को दर्शाता है। माना कि बिंदु (points) $(x, P(X=x)), x=0,1,2,3,4, x y$-तल में एक नियत सरल रेखा (fixed straight line) पर स्थित हैं, और सभी $x \in R -\{0,1,2,3,4\}$ के लिए $P(X=x)=0$ है। यदि $X$ का माध्य (mean) $\frac{5}{2}$ है, और $X$ का प्रसरण (variance) $\alpha$ है, तब $24 \alpha$ का मान. . . . .है।
तीन प्रेक्षणों $a , b$ तथा $c$ का विचार कीजिए, जिनके लिए $b = a + c$ है। यदि $a +2, b +2, c +2$ का मानक विचलन $d$ है, तो निम्न में से कौन सा सत्य है ?
प्रथम $n$ प्राकृत संख्याओं का मानक विचलन $(S.D.)$ है