प्रथम $n$ प्राकृत संख्याओं का मानक विचलन $(S.D.)$ है
$\frac{{n + 1}}{2}$
$\sqrt {\frac{{n(n + 1)}}{2}} $
$\sqrt {\frac{{{n^2} - 1}}{{12}}} $
इनमें से कोई नहीं
$10$ प्रेक्षणों के माध्य तथा मानक विचलन क्रमशः $20$ तथा $2$ हैं। इन $10$ प्रेक्षणों में से प्रत्येक को $p$ से गुणा करने के पश्चात प्रत्येक में से $q$ कम किया गया, जहाँ $p \neq 0$ तथा $q \neq 0$ हैं। यदि नए माध्य तथा मानक विचलन के मान अपने मूल मानों के आधे हैं, तो $q$ का मान हैं
माना चार संख्याओं $3,7, x$ तथा $y ( x > y )$ के माध्य तथा प्रसरण क्रमशः $5$ तथा $10$ है। तो चार संख्याओं $3+2 x , 7+2 y , x + y$ तथा $x - y$ का माध्य ............ है
$10$ छात्रों के अंकों के माध्य तथा मानक विचलन क्रमशः $50$ तथा $12$ ज्ञात किए गए। बाद में यह देखा गया कि दो छात्रों के अंक $20$ तथा $25$ गलती से क्रमशः $45$ तथा $50$ पढ़े गए थे। तो सही प्रसरण है_______________.
एक समूह के दो नमूनों में से पहले नमूने में $100$ वस्तुएँ हैं जिनका माध्य $15$ तथा मानक विचलन $3$ हैं। यदि पूरे समूह में $250$ वस्तुएँ हैं और उनका माध्य $15.6$ तथा मानक विचलन $\sqrt{13.44}$ हैं, तो दूसरे नमूने का मानक विचलन है
यदि प्रत्येक प्रेक्षण $x_{1}, x_{2}, \ldots, x_{n}$ को ' $a$ ', से बढ़ाया जाए जहाँ $a$ एक ऋणात्मक या धनात्मक संख्या है, तो दिखाइए कि प्रसरण अपरिवर्तित रहेगा।