माना कि $X$ एक याद्छिक चर (random variable) है, और माना कि $P(X=x), X$ के मान $x$ लेने की प्रायिकता (probability) को दर्शाता है। माना कि बिंदु (points) $(x, P(X=x)), x=0,1,2,3,4, x y$-तल में एक नियत सरल रेखा (fixed straight line) पर स्थित हैं, और सभी $x \in R -\{0,1,2,3,4\}$ के लिए $P(X=x)=0$ है। यदि $X$ का माध्य (mean) $\frac{5}{2}$ है, और $X$ का प्रसरण (variance) $\alpha$ है, तब $24 \alpha$ का मान. . . . .है।

  • [IIT 2024]
  • A

    $20$

  • B

    $30$

  • C

    $40$

  • D

    $42$

Similar Questions

यदि आँकड़ें $x _{1}, x _{2}, \ldots, x _{10}$ इस प्रकार हैं कि इनमें से प्रथम चार का माध्य $11$, है बाकी छः का माध्य $16$ है तथा इन सभी के वर्गों का योग $2,000$ है, तो इन आँकड़ों का मानक विचलन हैं

  • [JEE MAIN 2019]

माना $5$ प्रेक्षणों $x_1, x_2, x_3, x_4, x_5$ का माध्य तथा प्रसरण क्रमश: $\frac{24}{5}$ तथा $\frac{194}{25}$ है। यदि प्रथम चार प्रेक्षणों का माध्य तथा प्रसरण क्रमश: $\frac{7}{2}$ तथा $a$ है, तो $\left(4 a+x_5\right)$ है:

  • [JEE MAIN 2022]

यदि प्रेक्षणों ${x_1},\,{x_2},\,......{x_n}$ का प्रसरण ${\sigma ^2}$ है, तब $a{x_1},\,a{x_2},.......,\,{\rm{ }}a{x_n}$, $a \ne  0$ का प्रसरण है

माना $10$ प्रेक्षणों $\mathrm{a}_1, \mathrm{a}_2, \ldots . \mathrm{a}_{10}$ के लिए $\sum_{\mathrm{k}=1}^{10} \mathrm{a}_{\mathrm{k}}=50$तथा $\sum_{\forall k < j} a_k \cdot a_j=1100$ है। तो $a_1, a_2, \ldots, a_{10}$ का मानक विचलन बराबर है :

  • [JEE MAIN 2024]

निम्नलिखित श्रेणी का मानक विचलन है

Measurements

0-10

10-20

20-30

30-40

Frequency

1

3

4

2