माना कि $X$ एक याद्छिक चर (random variable) है, और माना कि $P(X=x), X$ के मान $x$ लेने की प्रायिकता (probability) को दर्शाता है। माना कि बिंदु (points) $(x, P(X=x)), x=0,1,2,3,4, x y$-तल में एक नियत सरल रेखा (fixed straight line) पर स्थित हैं, और सभी $x \in R -\{0,1,2,3,4\}$ के लिए $P(X=x)=0$ है। यदि $X$ का माध्य (mean) $\frac{5}{2}$ है, और $X$ का प्रसरण (variance) $\alpha$ है, तब $24 \alpha$ का मान. . . . .है।
$20$
$30$
$40$
$42$
माना प्रेक्षणों के दो समुच्चय $\mathrm{X}=\{11,12,13, \ldots \ldots$, $40,41\}$ तथा $\mathrm{Y}=\{61,62,63, \ldots ., 90,91\}$ है। यदि इनके माध्य क्रमशः $\bar{x}$ तथा $\bar{y}$ हैं तथा $\mathrm{X} \cup \mathrm{Y}$ में सभी प्रेक्षणों का प्रसरण $\sigma^2$ है तो $\left|\overline{\mathrm{x}}+\overline{\mathrm{y}}-\sigma^2\right|$ बराबर है_____________.
$100$ प्रेक्षणों का माध्य और मानक विचलन क्रमश: $20$ और $3$ हैं। बाद में यह पाया गया कि तीन प्रेक्षण $21,21$ तथा $18$ गलत थे। यदि गलत प्रेक्षणों को हटा दिया जाए तो माध्य व मानक विचलन ज्ञात कीजिए।
पाँच प्रेक्षणों का माध्य $4$ है तथा इनका प्रसरण $5.2$ है। यदि इन प्रेक्षणों में से तीन $1, 2$ तथा $6$ है, तब अन्य दो प्रेक्षण हैं
$15$ संख्याओं के माध्य व प्रसरण क्रमशः $12$ व $14$ हैं।
$15$ और संख्याओं के माध्य व प्रसरण क्रमशः $14$ व
$\sigma^2$ हैं। यदि सभी 30 संख्याओं का प्रसरण $13$ है, तो
$\sigma^2$ बराबर है