The sum of solutions of the equation $\frac{\cos \mathrm{x}}{1+\sin \mathrm{x}}=|\tan 2 \mathrm{x}|, \mathrm{x} \in\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)-\left\{\frac{\pi}{4},-\frac{\pi}{4}\right\}$ is :

  • [JEE MAIN 2021]
  • A

    $-\frac{11 \pi}{30}$

  • B

    $\frac{\pi}{10}$

  • C

    $-\frac{7 \pi}{30}$

  • D

    $-\frac{\pi}{15}$

Similar Questions

The number of values of $x$ in the interval $\left(\frac{\pi}{4}, \frac{7 \pi}{4}\right)$ for which $14 \operatorname{cosec}^{2} x-2 \sin ^{2} x=21$ $-4 \cos ^{2} x$ holds, is

  • [JEE MAIN 2022]

For $n \in Z$ , the general solution of the equation

$(\sqrt 3  - 1)\,\sin \,\theta \, + \,(\sqrt 3  + 1)\,\cos \theta \, = \,2$ is

If $\alpha ,\beta ,\gamma $ be the angles made by a line with $x, y$ and $z$ axes respectively so that $2\left( {\frac{{{{\tan }^2}\,\alpha }}{{1 + {{\tan }^2}\,\alpha }} + \frac{{{{\tan }^2}\,\beta }}{{1 + {{\tan }^2}\,\beta }} + \frac{{{{\tan }^2}\,\gamma }}{{1 + {{\tan }^2}\,\gamma }}} \right) = 3\,{\sec ^2}\,\frac{\theta }{2},$ then $\theta =$

The number of solution of the given equation $a\sin x + b\cos x = c$ , where $|c|\, > \,\sqrt {{a^2} + {b^2}} ,$ is

If $r\,\sin \theta = 3,r = 4(1 + \sin \theta ),\,\,0 \le \theta \le 2\pi ,$ then $\theta = $