The number of distinct solutions of the equation $\log _{\frac{1}{2}}|\sin x|=2-\log _{\frac{1}{2}}|\cos x|$ in the interval $[0,2 \pi],$ is
$8$
$5$
$11$
$12$
If $\sin 2x + \sin 4x = 2\sin 3x,$ then $x =$
For $x \in(0, \pi)$, the equation $\sin x+2 \sin 2 x-\sin 3 x=3$ has
The solution set of the equation $tan(\pi\, tanx) = cot(\pi\, cot\, x)$ is
General value of $\theta $ satisfying the equation ${\tan ^2}\theta + \sec 2\theta - = 1$ is
If $\cot (\alpha + \beta ) = 0,$ then $\sin (\alpha + 2\beta ) = $