The value of $\theta $ lying between $0$ and $\pi /2$ and satisfying the equation

$\left| {\,\begin{array}{*{20}{c}}{1 + {{\sin }^2}\theta }&{{{\cos }^2}\theta }&{4\sin 4\theta }\\{{{\sin }^2}\theta }&{1 + {{\cos }^2}\theta }&{4\sin 4\theta }\\{{{\sin }^2}\theta }&{{{\cos }^2}\theta }&{1 + 4\sin 4\theta }\end{array}\,} \right| = 0$

  • [IIT 1988]
  • A

    $\frac{{7\pi }}{{24}}$ or $\frac{{11\pi }}{{24}}$

  • B

    $\frac{{5\pi }}{{24}}$

  • C

    $\frac{\pi }{{24}}$

  • D

    None of these

Similar Questions

The expression $(1 + \tan x + {\tan ^2}x)$ $(1 - \cot x + {\cot ^2}x)$ has the positive values for $x$, given by

The solution set of the system of equation

$x\,\, + \,\,y\,\, = \,\,\frac{{2\pi }}{3},\,{\rm{cos}}\,{\rm{x   + }}\,{\rm{ cos}}\,{\rm{y}}\,{\rm{ = }}\,\frac{3}{2},$ where $x$ and $y$ are real in

If the solution for $\theta $ of $\cos p\theta + \cos q\theta = 0,\;p > 0,\;q > 0$ are in $A.P.$, then the numerically smallest common difference of $A.P.$ is

If $\cos 2\theta + 3\cos \theta = 0$, then the general value of $\theta $ is

If $\tan (\cot x) = \cot (\tan x),$ then $\sin 2x =$