સમીકરણ $\frac{\cos \mathrm{x}}{1+\sin \mathrm{x}}=|\tan 2 \mathrm{x}|, \mathrm{x} \in\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)-\left\{\frac{\pi}{4},-\frac{\pi}{4}\right\}$ ના ઉકેલોનો સરવાળો મેળવો.
$-\frac{11 \pi}{30}$
$\frac{\pi}{10}$
$-\frac{7 \pi}{30}$
$-\frac{\pi}{15}$
$sin\, x + sin \,5x = sin\, 2x + sin \,4x$ ના વ્યાપક ઉકેલ ......... થાય
સમીકરણ ${2^{\tan \,\,\left( {x\,\, - \,\,{\textstyle{\pi \over 4}}} \right)}}$ $- 2$${\left( {0.25} \right)^{\frac{{{{\sin }^2}\,\left( {x\,\, - \,\,{\textstyle{\pi \over 4}}} \right)}}{{\cos \,\,2x}}}}$ $+ 1 = 0$ નો ઉકેલગણ.......... છે
જો $\tan \theta - \sqrt 2 \sec \theta = \sqrt 3 $, તો $\theta $ નો વ્યાપક ઉકેલ મેળવો.
જો $\sqrt 2 \sec \theta + \tan \theta = 1,$ તો $\theta $ નો વ્યાપક ઉકેલ મેળવો.
આપેલ સમીકરણના વ્યાપક ઉકેલ શોધો : $\cos 4 x=\cos 2 x$