If $\cos A\sin \left( {A - \frac{\pi }{6}} \right)$ is maximum, then the value of $A$ is equal to
$\frac{\pi }{3}$
$\frac{\pi }{4}$
$\frac{\pi }{2}$
None of these
Let $S=\left\{x \in\left(-\frac{\pi}{2}, \frac{\pi}{2}\right): 9^{1-\tan ^2 x}+9^{\tan ^2 x}=10\right\}$ and $\beta=\sum_{x \in S} \tan ^2\left(\frac{x}{3}\right)$, then $\frac{1}{6}(\beta-14)^2$ is equal to
If $\cot \theta + \cot \left( {\frac{\pi }{4} + \theta } \right) = 2$, then the general value of $\theta $ is
The sides of a triangle are $\sin \alpha ,\,\cos \alpha $ and $\sqrt {1 + \sin \alpha \cos \alpha } $ for some $0 < \alpha < \frac{\pi }{2}$. Then the greatest angle of the triangle is.....$^o$
Let $X=\{x \in R: \cos (\sin x)=\sin (\cos x)\} .$ The number of elements in $X$ is
Find the principal and general solutions of the equation $\cot x=-\sqrt{3}$